IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v359y2024ics0306261924000394.html
   My bibliography  Save this article

Experimental study on leakage temperature field of hydrogen blending into natural gas buried pipeline

Author

Listed:
  • Zhu, Jianlu
  • Wang, Sailei
  • Pan, Jun
  • Lv, Hao
  • Zhang, Yixiang
  • Han, Hui
  • Liu, Cuiwei
  • Duo, Zhili
  • Li, Yuxing

Abstract

Hydrogen blending into natural gas is a feasible approach to realize the low-carbon energy structure. The impact of the hydrogen blending ratio on the leakage characteristics of buried gas pipelines determines the safety of pipeline operations. In this study, we investigated the influence of the hydrogen blending ratio on the soil temperature field after the buried gas pipeline leak and the detection range of fiber optic sensors through a field test and numerical simulation. A critical flow model based on the Peng-Robinson (PR) equation and a soil diffusion model based on simplified throttling were established for the microleakage and diffusion stages of the buried pipeline. Furthermore, the soil temperature variation after the buried pipeline leak and the prediction model of cooling capacity caused by gas leakage were obtained. In addition, the leakage experiments were performed to evaluate the impact of hydrogen blending ratio, pipeline operation pressure, and leak direction, as well as to achieve the soil temperature field distribution near the leak point. The following conclusions can be drawn: (1) Soil temperature decreases as the hydrogen blending ratio increases; (2) The detection range of the fiber optic sensors increases as the hydrogen blending ratio increases, ensuring the applicability of the existing fiber optic detection system for detecting hydrogen blending pipeline leaks. The findings provide a valuable research topic for hydrogen pipeline leak detection.

Suggested Citation

  • Zhu, Jianlu & Wang, Sailei & Pan, Jun & Lv, Hao & Zhang, Yixiang & Han, Hui & Liu, Cuiwei & Duo, Zhili & Li, Yuxing, 2024. "Experimental study on leakage temperature field of hydrogen blending into natural gas buried pipeline," Applied Energy, Elsevier, vol. 359(C).
  • Handle: RePEc:eee:appene:v:359:y:2024:i:c:s0306261924000394
    DOI: 10.1016/j.apenergy.2024.122656
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924000394
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122656?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:359:y:2024:i:c:s0306261924000394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.