IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v359y2024ics0306261924000126.html
   My bibliography  Save this article

Maximum efficiency points of a proton-exchange membrane fuel cell system: Theory and experiments

Author

Listed:
  • Nurdin, Hendra I.
  • Benmouna, Amel
  • Zhu, Bin
  • Chen, Jiayin
  • Becherif, Mohamed
  • Hissel, Daniel
  • Fletcher, John

Abstract

In this paper, a theoretical expression for the efficiency of a fuel cell system is derived. The studied system consists of a proton-exchange membrane fuel cell stack coupled at its output to a DC/DC boost converter. A fuel cell stack Larminie and Dicks model along with an efficiency curve for our boost converter are fitted using experimental data. One maximum efficiency point for the fuel cell stack coupled to the DC/DC power converter is shown and lies in the safe zone of the fuel cell stack. Experimental results on the fuel cell efficiency, DC/DC efficiency and their association on a test bench indicate a good agreement between the theoretical estimations and the experimentally obtained results at different values of the DC/DC converter output voltage. The results provide strong theoretical and experimental evidence for a unique maximum efficiency point for the fuel cell system and form a basis for developing maximum efficiency point tracking algorithms.

Suggested Citation

  • Nurdin, Hendra I. & Benmouna, Amel & Zhu, Bin & Chen, Jiayin & Becherif, Mohamed & Hissel, Daniel & Fletcher, John, 2024. "Maximum efficiency points of a proton-exchange membrane fuel cell system: Theory and experiments," Applied Energy, Elsevier, vol. 359(C).
  • Handle: RePEc:eee:appene:v:359:y:2024:i:c:s0306261924000126
    DOI: 10.1016/j.apenergy.2024.122629
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924000126
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122629?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:359:y:2024:i:c:s0306261924000126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.