IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v359y2024ics0306261923019529.html
   My bibliography  Save this article

Decentralized optimization of energy-water nexus based on a mixed-integer boundary compatible algorithm

Author

Listed:
  • Sharma, Santosh
  • Li, Qifeng

Abstract

The electric power distribution system (PDS) and the water distribution system (WDS) are coupled with each other through electricity-driven water facilities (EdWFs), such as pumps, water desalination plants, and wastewater treatment facilities. However, they are generally owned and operated by different utilities, and there does not exist an operator that possesses full information of both systems. As a result, centralized methods are not applicable for coordinating the operation of the two systems. This paper proposes a decentralized framework where the PDS and WDS operators solve their own operation problems, respectively, by sharing only limited information. Nevertheless, the boundary variables (i.e., the variables shared between two systems) are discontinuous due to their dependence on the on/off nature of EdWFs. Unfortunately, mature decentralized/distributed optimization algorithms like the alternating direction method of multipliers (ADMM) cannot guarantee convergence and optimality for a case like this. Therefore, this paper develops a novel algorithm that can guarantee convergence and optimality for the decentralized optimization of PDS and WDS based on a recently developed algorithm called the SD-GS-AL method. The SD-GS-AL method is a combination of the simplicial decomposition (SD), gauss–seidel (GS), and augmented Lagrangian (AL) methods, which can guarantee convergence and optimality for mixed-integer programs (MIPs) with continuous boundary variables. Nonetheless, the original SD-GS-AL algorithm does not work for the PDS-WDS coordination problem where the boundary variables are discontinuous. This paper modifies and improves the original SD-GS-AL algorithm by introducing update rules to discontinuous boundary variables (called the Auxiliary Variables Update step). The proposed mixed-integer boundary compatible (MIBC) SD-GS-AL algorithm has the following benefits: (1) it is capable of handling cases whose boundary variables are discontinuous with convergence and optimality guaranteed for mild assumptions, and (2) it only requires limited information exchange between PDS and WDS operators, which will help preserve the privacy of the two utilities and reduce the investment in building additional communication channels. Simulations on two coupled PDS and WDS test cases (Case 1: IEEE-13 node PDS and 11-node WDS, and Case 2: IEEE-37 node PDS and 36-node WDS) show that the proposed MIBC algorithm converges to the optimal solutions while the original SD-GS-AL does not converge for both test cases. The ADMM does not converge for the first test case while it converges to a sub-optimal solution, 63 % more than the optimal solution for the second test case.

Suggested Citation

  • Sharma, Santosh & Li, Qifeng, 2024. "Decentralized optimization of energy-water nexus based on a mixed-integer boundary compatible algorithm," Applied Energy, Elsevier, vol. 359(C).
  • Handle: RePEc:eee:appene:v:359:y:2024:i:c:s0306261923019529
    DOI: 10.1016/j.apenergy.2023.122588
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923019529
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122588?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:359:y:2024:i:c:s0306261923019529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.