IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v358y2024ics0306261924000096.html
   My bibliography  Save this article

FedPT-V2G: Security enhanced federated transformer learning for real-time V2G dispatch with non-IID data

Author

Listed:
  • Shang, Yitong
  • Li, Sen

Abstract

The rising popularity of electric vehicles (EVs) underscores the potential of vehicle-to-grid (V2G) technology to contribute to load peak-shaving, valley-filling, and photovoltaic (PV) self-consumption. Effective V2G control strategies can be obtained by data-driven techniques, which is able to leverage historical and current data to inform future decision-making amidst uncertainties. However, the centralized collection and sharing of data among charging stations face challenges due to data asset concerns. Furthermore, even if data sharing hurdles are overcome, the non-independent and non-identically distributed (Non-IID) nature of data across charging stations can still negatively impact performance. In this study, we introduce FedPT-V2G, a security-enhanced federated transformer learning approach for real-time V2G dispatch that addresses Non-IID data. We employ deep learning models trained on historical and current data to enable real-time decision-making, facilitating both load shifting and PV self-consumption. Additionally, we utilize federated learning to jointly train a global model across all charging stations without collecting or sharing any local private data. We pioneer the application of the Proximal algorithm and Transformer model to tackle data distribution discrepancies within the V2G scheduling prediction task. The Proximal algorithm employs regularization techniques to align local models at each charging station more closely with the global model during updates. Concurrently, the multi-head attention mechanism within the Transformer model allows learned feature vectors to diverge, enabling better exploitation of variations across the entire feature space. Finally, we validate the proposed FedPT-V2G approach through extensive numerical simulations, demonstrating comparable performance to centralized learning on both balanced (98.93% vs 98.65%) and imbalanced (92.15% vs 92.20% in label skew) datasets.

Suggested Citation

  • Shang, Yitong & Li, Sen, 2024. "FedPT-V2G: Security enhanced federated transformer learning for real-time V2G dispatch with non-IID data," Applied Energy, Elsevier, vol. 358(C).
  • Handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261924000096
    DOI: 10.1016/j.apenergy.2024.122626
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924000096
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122626?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261924000096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.