IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v358y2024ics0306261923019785.html
   My bibliography  Save this article

Thermodynamic and emission characteristics of a hydrogen-enriched natural gas-fired boiler integrated with external flue gas recirculation and waste heat recovery

Author

Listed:
  • Wang, Tiantian
  • Liu, Xuemin
  • Zhang, Yang
  • Zhang, Hai

Abstract

Hydrogen-enriched natural gas (HENG) is a low-carbon fuel and its utilization in combustion devices has been under extensive discussion recently as it is a promising way to reduce the CO2 emission during combustion. The applicability of HENG in the existing natural gas-fired combustion equipment in terms of its efficiency and emissions attracts increasing attention, especially for industrial and domestic small-scale boilers. In this study, the thermal efficiency and pollutant emissions of a 4.2 MWth HENG-fired boiler integrated with external flue gas recirculation (FGR) were respectively evaluated based on the thermodynamic and heat transfer models and the Chemical Reaction Network model. Results suggested that NOx emission rose by ∼19% as the hydrogen volumetric fraction in the fuel increased from 0 to 0.4 at a constant excess air ratio and FGR rate. To suppress the NOx rise, the FGR rate was tuned higher while the system thermal efficiency decreased subsequently. To further improve the overall system thermal efficiency, a cascade flue gas waste heat recovery strategy including sensible heat recovery using an external economizer and latent heat recovery using dual-spray heat exchangers was proposed. The thermodynamic analysis demonstrated that the external economizer improved the overall system thermal efficiency by 0.4% - 0.7% and the dual-spray heat exchangers promoted the overall system thermal efficiency by over 5%. Thus, a comprehensive performance optimization strategy was developed for HENG-fired boilers in terms of their overall system thermal efficiency promotion, NOx emission control, and CO2 emission reduction.

Suggested Citation

  • Wang, Tiantian & Liu, Xuemin & Zhang, Yang & Zhang, Hai, 2024. "Thermodynamic and emission characteristics of a hydrogen-enriched natural gas-fired boiler integrated with external flue gas recirculation and waste heat recovery," Applied Energy, Elsevier, vol. 358(C).
  • Handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019785
    DOI: 10.1016/j.apenergy.2023.122614
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923019785
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122614?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.