IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v358y2024ics0306261923019761.html
   My bibliography  Save this article

Reliability-based leading edge erosion maintenance strategy selection framework

Author

Listed:
  • Lopez, Javier Contreras
  • Kolios, Athanasios
  • Wang, Lin
  • Chiachio, Manuel
  • Dimitrov, Nikolay

Abstract

Leading edge erosion has become one of the most prevailing failure modes of wind turbines. Its effects can evolve from an aerodynamic modification of the properties of the blade to a potential structural failure of the leading edge. The first produces a reduction of energy production and the second can produce a catastrophic failure of the blade. Considering the uncertainties and constraints involved in the design of optimal operation and maintenance (O&M) strategies for offshore assets and the influence of site-specific parameters on the dynamics of this particular failure mode, the task becomes complex. In this study, a framework to evaluate the influence of different maintenance strategies considering uncertainties in weather, material behaviour and repair success is presented. Monte Carlo Simulation (MCS) is used alongside a computational framework for Leading Edge Erosion (LEE) degradation to evaluate the lifetime cost distribution and probability of failure of the chosen maintenance strategies. The use of the framework is demonstrated in a case study considering a 5-MW offshore wind turbine located in the north of Germany. The influence of the modification of the maintenance interval or time between repairs and the comparison with maintenance activities executed only during months with milder weather is analysed in terms of cost and reliability. A Pareto front plot considering the probability of failure and the median of the cost is used to jointly compare strategies considering both aspects to provide a tool for risk-informed maintenance selection. Finally, the potential benefits of condition-based maintenance and autonomous decision-making systems are discussed. The case of study shows the benefits of repairs during summer months and the importance of the relation risk/O&M cost for different maintenance strategies.

Suggested Citation

  • Lopez, Javier Contreras & Kolios, Athanasios & Wang, Lin & Chiachio, Manuel & Dimitrov, Nikolay, 2024. "Reliability-based leading edge erosion maintenance strategy selection framework," Applied Energy, Elsevier, vol. 358(C).
  • Handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019761
    DOI: 10.1016/j.apenergy.2023.122612
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923019761
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122612?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.