IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v358y2024ics0306261923019669.html
   My bibliography  Save this article

Physics-informed graphical neural network for power system state estimation

Author

Listed:
  • Ngo, Quang-Ha
  • Nguyen, Bang L.H.
  • Vu, Tuyen V.
  • Zhang, Jianhua
  • Ngo, Tuan

Abstract

State estimation is highly critical for accurately observing the dynamic behavior of the power grids and minimizing risks from cyber threats. However, existing state estimation methods encounter challenges in accurately capturing power system dynamics, primarily because of limitations in encoding the grid topology and sparse measurements. This paper proposes a physics-informed graphical learning state estimation method to address these limitations by leveraging both domain physical knowledge and a graph neural network (GNN). We employ a GNN architecture that can handle the graph-structured data of power systems more effectively than traditional data-driven methods. The physics-based knowledge is constructed from the branch current formulation, making the approach adaptable to both transmission and distribution systems. The validation results of three IEEE test systems show that the proposed method can achieve lower mean square error more than 20% than the conventional methods.

Suggested Citation

  • Ngo, Quang-Ha & Nguyen, Bang L.H. & Vu, Tuyen V. & Zhang, Jianhua & Ngo, Tuan, 2024. "Physics-informed graphical neural network for power system state estimation," Applied Energy, Elsevier, vol. 358(C).
  • Handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019669
    DOI: 10.1016/j.apenergy.2023.122602
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923019669
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122602?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.