IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v358y2024ics030626192301961x.html
   My bibliography  Save this article

Simultaneously maximizing microalgal biomass and lipid productivities by machine learning driven modeling, global sensitivity analysis and multi-objective optimization for sustainable biodiesel production

Author

Listed:
  • Kumar, Ravi Ranjan
  • Sarkar, Debasis
  • Sen, Ramkrishna

Abstract

Simultaneous enhancement in the productivities of microalgal biomass and lipids that are inversely correlated to each other has been a long-standing challenge before the scientists engaged in algal biodiesel research and innovation. This study, develops an Artificial Neural Network (ANN) model and uses multi-objective optimization approach to determine the process parameters, namely, light intensity, CO2%, air flow rate, and C/N ratio to maximize biomass and lipid productivities of microalga, Chlorella sorokiniana, simultaneously. Experimental data based on central composite design (CCD) were used to train a feed-forward multilayer ANN with four critical parameters. The global sensitivity analysis was performed on the trained ANN model using Sobol's method to assess the relative significance of the four process variables. Since the objectives of maximizing biomass and lipid productivities conflict with each other, multi-objective optimization approach was used for deriving the optimal process parameters, experimental validation of which resulted in approximately 3 times increase in biomass productivity and 7 times increase in lipid productivity. On transesterification of the lipid, the biodiesel product with saturated to unsaturated fatty acids ratio of 48:52 conformed very well to the international standards, ASTM D6751 and EN14214, thereby making it an environment friendly green biofuel. Thus, the present study showcases the successful application of machine learning tool in analysing the global sensitivity analysis of process variables, and employ it for multi-objective optimization towards achieving maximum microalgal biomass and lipid productivities concomitantly for potentially sustainable production of biodiesel.

Suggested Citation

  • Kumar, Ravi Ranjan & Sarkar, Debasis & Sen, Ramkrishna, 2024. "Simultaneously maximizing microalgal biomass and lipid productivities by machine learning driven modeling, global sensitivity analysis and multi-objective optimization for sustainable biodiesel produc," Applied Energy, Elsevier, vol. 358(C).
  • Handle: RePEc:eee:appene:v:358:y:2024:i:c:s030626192301961x
    DOI: 10.1016/j.apenergy.2023.122597
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192301961X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122597?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:358:y:2024:i:c:s030626192301961x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.