IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v358y2024ics0306261923019281.html
   My bibliography  Save this article

Reduced desalination carbon footprint on islands with weak electricity grids. The case of Gran Canaria

Author

Listed:
  • Cabrera, Pedro
  • Carta, José A.
  • Matos, Carlos
  • Rosales-Asensio, Enrique
  • Lund, Henrik

Abstract

The aim of this paper is to present options to make low-carbon footprint large-scale desalination a reality on arid islands with weak electrical grids. Through these options, the goal is to reconfigure on-grid wind energy/desalination systems for large- and medium-scale water production. In this context, it is proposed to use lithium-ion batteries for stationary energy storage together with management strategies aimed at avoiding the wind energy/desalination systems having to consume energy from the conventional grid they are connected to. The control strategy is based on ensuring that the power provided by the wind farm and batteries remains in synchrony with the power demand of the desalination plant throughout the system's useful life. The interannual variation of wind energy is considered when sizing the renewable energy system and processes for its estimation are proposed. The case study is centred on the Canary Archipelago, a region that is especially vulnerable to the impacts of climate change, but which enjoys exceptional characteristics for the exploitation of wind energy. The results obtained show the optimal wind farm and energy storage system capacities of the analysed configurations. The approach presented allows a low-carbon operational footprint. If the control strategy were to be put into practice today, the current grid restrictions and a life cycle assessment of the system carried out in a societal context that continues to be fossil fuel dependent indicate a potential reduction of 77.4% of the footprint. However, the remaining 22.6% could be eliminated in the future when the manufacturing processes of wind turbines, batteries and desalination plants receive the benefits of carbon-neutral societies.

Suggested Citation

  • Cabrera, Pedro & Carta, José A. & Matos, Carlos & Rosales-Asensio, Enrique & Lund, Henrik, 2024. "Reduced desalination carbon footprint on islands with weak electricity grids. The case of Gran Canaria," Applied Energy, Elsevier, vol. 358(C).
  • Handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019281
    DOI: 10.1016/j.apenergy.2023.122564
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923019281
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122564?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.