IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v358y2024ics0306261923019190.html
   My bibliography  Save this article

A hybrid deep learning approach for remaining useful life prediction of lithium-ion batteries based on discharging fragments

Author

Listed:
  • Liu, Yunpeng
  • Hou, Bo
  • Ahmed, Moin
  • Mao, Zhiyu
  • Feng, Jiangtao
  • Chen, Zhongwei

Abstract

Accurate remaining useful life (RUL) estimation is crucial for the normal and safe operations of lithium-ion batteries (LIBs). Traditionally, every cycle’s maximum discharging capacity should be measured and then serve as a model input to predict iteratively the degradation trajectory. Unfortunately, full discharge stages are not always present in practice. Herein, this study presents a hybrid approach consisting of signal decomposition and deep learning to overcome the above limitations. Firstly, for the collected discharging fragments, the convolutional neural networks model predicts every cycle’s maximum discharging capacity which combines to form a predicted capacity degradation curve before the start point of RUL prediction. Then, via empirical mode decomposition, this curve’s global degradation trend is extracted and serves as the subsequent model input. Finally, the entire degradation trajectory and RUL value could be inferred based on the well-trained gated recurrent unit-fully connected model. The superior prediction performance of the proposed method is verified on two open battery datasets. All the estimation errors can be maintained within 7.0% based on the discharging fragment of the ∼20% capacity ratio ranges from 40% to 60% of the degradation data. This result illustrates the promising accuracy and robustness of the developed LIBs RUL estimation method, especially for not full discharge process in practice.

Suggested Citation

  • Liu, Yunpeng & Hou, Bo & Ahmed, Moin & Mao, Zhiyu & Feng, Jiangtao & Chen, Zhongwei, 2024. "A hybrid deep learning approach for remaining useful life prediction of lithium-ion batteries based on discharging fragments," Applied Energy, Elsevier, vol. 358(C).
  • Handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019190
    DOI: 10.1016/j.apenergy.2023.122555
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923019190
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122555?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.