IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v358y2024ics0306261923019104.html
   My bibliography  Save this article

Novel composite phase change materials supported by oriented carbon fibers for solar thermal energy conversion and storage

Author

Listed:
  • Zhang, Pengfei
  • Wang, Yilin
  • Qiu, Yu
  • Yan, Hongjie
  • Wang, Zhaolong
  • Li, Qing

Abstract

Phase change materials (PCMs) have aroused significant interest as promising materials for solar thermal energy conversion and storage. However, the long-standing shortcomings of liquid leakage, low thermal conductivity, and weak solar absorptance limit their practical applications. Herein, novel composite phase change materials (CPCMs) with anisotropic heat conduction are manufactured by mixing continuous carbon fibers (CFs) and palmitic acid (PA)/olefin block copolymer (OBC) mixtures using pressure induction and vacuum treatment. Because the oriented CFs in the vertical direction can offer heat transfer channels inside the composites, the vertical and horizontal thermal conductivities of the CPCMs are 5.84 W·K−1·m−1 and 1.34 W·K−1·m−1, respectively, resulting in a relatively high anisotropic degree of 4.36. Furthermore, to improve the absorption of solar radiation for the composite, carbon black is applied to the upper surface of the CPCMs, achieving a high total solar absorptance of 0.966. Due to the combination of the high solar absorptance of the carbon black and the high vertical thermal conductivity within the composites, the CPCMs exhibit outstanding solar-to-thermal efficiencies of 87.54% ∼ 95.08% at 1– 3 kW·m−2. In addition, stability testing also confirms that the CPCMs have excellent leakage-proof properties, thermal stability, and cyclic stability for long-term utilization. This work can provide an efficient route to synthesize high-performance CPCMs for solar thermal applications.

Suggested Citation

  • Zhang, Pengfei & Wang, Yilin & Qiu, Yu & Yan, Hongjie & Wang, Zhaolong & Li, Qing, 2024. "Novel composite phase change materials supported by oriented carbon fibers for solar thermal energy conversion and storage," Applied Energy, Elsevier, vol. 358(C).
  • Handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019104
    DOI: 10.1016/j.apenergy.2023.122546
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923019104
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122546?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.