IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v358y2024ics0306261923019098.html
   My bibliography  Save this article

Discrete optimal power flow with prohibited zones, multiple-fuel options, and practical operational rules for control devices

Author

Listed:
  • Alencar, Marina Valença
  • da Silva, Diego Nunes
  • Nepomuceno, Leonardo
  • Martins, André Christóvão Pio
  • Balbo, Antonio Roberto
  • Soler, Edilaine Martins

Abstract

Although the optimal power flow (OPF) problem has been extensively studied, solving realistic OPF models that accurately represent the operating behavior of power system components remains challenging. This paper proposes a novel model for the AC OPF problem, aiming to minimize the fuel costs of thermal units while taking into account valve-point loading effects (VPLE), prohibited operation zones (POZ), multiple fuel options (MFO), and operational rules associated with the discrete tap ratios of on-load tap changer (OLTC) transformers and with the discrete shunt susceptances of capacitor/reactor banks. These rules are represented using complementarity constraints. We propose a solution approach that integrates several strategies to address the non-smooth features of the objective function related to VPLE, the disjoint constraints and functions tied to POZ and MFO, the discrete characteristics of the reactive control variables, and the complementarity constraints governing operational rules linked to voltage control devices such as OLTC transformers and capacitor/reactor banks. The resulting optimization problem is designed to be compatible with commercial solver packages. Numerical tests on the IEEE 30, 118, and 300-bus systems aim to examine the cumulative impact of these operational factors on the optimal solution. The solution strategy proposed has demonstrated its effectiveness in solving the proposed OPF problem within reasonable computation times.

Suggested Citation

  • Alencar, Marina Valença & da Silva, Diego Nunes & Nepomuceno, Leonardo & Martins, André Christóvão Pio & Balbo, Antonio Roberto & Soler, Edilaine Martins, 2024. "Discrete optimal power flow with prohibited zones, multiple-fuel options, and practical operational rules for control devices," Applied Energy, Elsevier, vol. 358(C).
  • Handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019098
    DOI: 10.1016/j.apenergy.2023.122545
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923019098
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122545?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.