IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v358y2024ics0306261923019062.html
   My bibliography  Save this article

Energy efficient design of regenerative shock absorbers for automotive suspensions: A multi-objective optimization framework

Author

Listed:
  • Puliti, Marco
  • Galluzzi, Renato
  • Tessari, Federico
  • Amati, Nicola
  • Tonoli, Andrea

Abstract

This study addresses the optimized design of electro-hydrostatic regenerative shock absorbers to enhance vibrational energy recovery in ground vehicles, aiming to reduce carbon footprint. The design strategy focuses on maximizing regeneration efficiency while minimizing actuator volume. Important trade-offs are considered as constraints, such as ride comfort and road holding. The approach employs a multi-objective evolutionary genetic algorithm, validated through numerical analysis, and applied to design a prototype. Experimental results show a peak regeneration efficiency of 45%, and simulations on a class-B vehicle indicate an average regenerated power of 101W per shock absorber, corresponding to a CO2 emission reduction of 5.25g/km.

Suggested Citation

  • Puliti, Marco & Galluzzi, Renato & Tessari, Federico & Amati, Nicola & Tonoli, Andrea, 2024. "Energy efficient design of regenerative shock absorbers for automotive suspensions: A multi-objective optimization framework," Applied Energy, Elsevier, vol. 358(C).
  • Handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019062
    DOI: 10.1016/j.apenergy.2023.122542
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923019062
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122542?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.