IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v358y2024ics0306261923019049.html
   My bibliography  Save this article

Optimal power distribution control in modular power architecture using hydraulic free piston engines

Author

Listed:
  • Fei, Mingda
  • Zhang, Zhenyu
  • Zhao, Wenbo
  • Zhang, Peng
  • Xing, Zhaolin

Abstract

Vehicle modularization has become an emerging trend in the automotive industry, leading to research on modular configuration, composition, and related control strategies. In this paper, we propose a modular power system with a hydraulic free piston engine (HFPE) as the power unit and develop a power distribution control strategy to enhance the overall efficiency of the system. Firstly, we determine the configuration scheme of the modular power system and establish a simulation model of the HFPE using MATLAB/Simulink. We conduct principle verification of the simulation model. Secondly, based on the simulation model of HFPE, we research the power unit control strategy using the machine learning regression prediction algorithm, enabling dynamic working condition switching of the power unit. Next, we propose a power distribution optimization algorithm which is named as the Rule Based Double Iterative Optimization Algorithm (RBDI) and compare it with several mature optimization algorithms under the framework of model predictive control, considering related constraints. Finally, we validate the performance of the proposed power distribution control strategy using a hardware-in-loop system. The results demonstrate that the output power of the modular power system can be effectively ensured. Compared with the average distribution algorithm (AVE), the genetic algorithm (GA), and the ameliorated particle swarm optimization algorithm (APSO), the overall working efficiency of the modular power system using the proposed control strategy is increased by 6.57%, 6.13%, and 5.59%, respectively, under the three test driving cycles.

Suggested Citation

  • Fei, Mingda & Zhang, Zhenyu & Zhao, Wenbo & Zhang, Peng & Xing, Zhaolin, 2024. "Optimal power distribution control in modular power architecture using hydraulic free piston engines," Applied Energy, Elsevier, vol. 358(C).
  • Handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019049
    DOI: 10.1016/j.apenergy.2023.122540
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923019049
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122540?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.