IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v358y2024ics0306261923016999.html
   My bibliography  Save this article

Development of a framework to assess the greenhouse gas mitigation potential from the adoption of low-carbon road vehicles in a hydrocarbon-rich region

Author

Listed:
  • Haider, Minza
  • Davis, Matthew
  • Kumar, Amit

Abstract

This study developed a novel assessment framework to analyze long-term energy transition in the road transport sector in which various technology options, market shares, policy measures, costs, and greenhouse gas emissions are considered in a single framework analysis. A data-intensive model was developed with the Low Emissions Analysis Platform (LEAP) and used to analyze policy scenarios up to 2050 for Alberta, Canada, a hydrocarbon-rich province with an emission-intensive energy sector. Three key policy measures – carbon pricing, zero-emission vehicle sales mandate, and incentivization – were analyzed in nine individual and combined policy scenarios. The transition to both hydrogen fuel cell electric vehicles and battery electric vehicles was assessed for all vehicle categories. Each fuel's full energy supply chain was modelled, including resource extraction, conversion, transmission and distribution, and fuelling, allowing for final and primary energy analysis. The findings show that carbon price and zero-emission vehicle incentives do not effectively lower greenhouse gas emissions on their own; zero-emission vehicle mandates are needed to transition the sector to a low-carbon energy system. The system-wide greenhouse gas emission footprints of hydrogen and battery electric vehicles are significantly below conventional vehicles in all cases. Scenarios biased towards battery electric vehicles had the most favorable results. The greenhouse gas emission footprint of hydrogen vehicles supplied by auto-thermal reforming with 91% carbon capture was lower than for battery electric vehicles powered by a primarily natural gas-based power grid. The findings on the effectiveness of carbon prices, incentives, and vehicle mandates should be considered by government policymakers aiming to reduce greenhouse gas emissions, infrastructure planners, and other energy stakeholders.

Suggested Citation

  • Haider, Minza & Davis, Matthew & Kumar, Amit, 2024. "Development of a framework to assess the greenhouse gas mitigation potential from the adoption of low-carbon road vehicles in a hydrocarbon-rich region," Applied Energy, Elsevier, vol. 358(C).
  • Handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261923016999
    DOI: 10.1016/j.apenergy.2023.122335
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923016999
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122335?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261923016999. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.