IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v357y2024ics0306261923019372.html
   My bibliography  Save this article

Low carbon scheduling method of electric power system considering energy-intensive load regulation of electrofused magnesium and wind powerfluctuation stabilization

Author

Listed:
  • Zhao, Xudong
  • Wang, Yibo
  • Liu, Chuang
  • Cai, Guowei
  • Ge, Weichun
  • Zhou, Jianing
  • Wang, Dongzhe

Abstract

The significant expansion of wind power has presented challenging obstacles to power system operation. The inherent stochasticity and variability of wind power have emerged as critical issues that impede the advancement of wind energy, affecting its integration and volatility control. Moreover, with the momentum of carbon peaking and carbon neutrality objectives, reducing CO2 emissions has become urgent. This study proposes a low-carbon dispatching methodology for power systems to address these challenges. It considers regulating energy-intensive loads of electrically fused magnesium and mitigating wind power fluctuations. The approach involves integrating electrically Fused magnesium loads with tight regulation characteristics on the demand side alongside thermal power plants to optimize the power grid and dispatch collectively. And battery energy storage devices are introduced into various wind power stations on the supply side to smooth out wind power fluctuations. The objective function aims to minimize the sum of the average variance of power fluctuations at all wind power busbars while adhering to constraints of maximum wind power consumption and minimum carbon emissions from thermal power plants. The problem is solved using genetic algorithms. Ultimately, we show how effective our proposed low-carbon dispatching method for power systems is, which deals with regulating energy-intensive loads of electrically fused magnesium and reducing wind power fluctuations. We demonstrate this through a case study of wind curtailment, CO2 emissions, wind power fluctuations, and other related parameters under different conditions. The approach can enhance renewable energy consumption, reduce carbon emissions, and mitigate the power fluctuations of renewable energy.

Suggested Citation

  • Zhao, Xudong & Wang, Yibo & Liu, Chuang & Cai, Guowei & Ge, Weichun & Zhou, Jianing & Wang, Dongzhe, 2024. "Low carbon scheduling method of electric power system considering energy-intensive load regulation of electrofused magnesium and wind powerfluctuation stabilization," Applied Energy, Elsevier, vol. 357(C).
  • Handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923019372
    DOI: 10.1016/j.apenergy.2023.122573
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923019372
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122573?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923019372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.