IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v357y2024ics0306261923019141.html
   My bibliography  Save this article

A holistic time series-based energy benchmarking framework for applications in large stocks of buildings

Author

Listed:
  • Piscitelli, Marco Savino
  • Giudice, Rocco
  • Capozzoli, Alfonso

Abstract

With the proliferation of Internet of Things (IoT) sensors and metering infrastructures in buildings, external energy benchmarking, driven by time series analytics, has assumed a pivotal role in supporting different stakeholders (e.g., policymakers, grid operators, and energy managers) who seek rapid and automated insights into building energy performance over time. This study presents a holistic and generalizable methodology to conduct external benchmarking analysis on electrical energy consumption time series of public and commercial buildings. Differently from conventional approaches that merely identify peer buildings based on their Primary Space Usage (PSU) category, this methodology takes into account distinctive features of building electrical energy consumption time series including thermal sensitivity, shape, magnitude, and introduces KPIs encompassing aspects related to the electrical load volatility, the rate of anomalous patterns, and the building operational schedule. Each KPI value is then associated with a performance score to rank the energy performance of a building according to its peers. The proposed methodology is tested using the open dataset Building Data Genome Project 2 (BDGP2) and in particular 622 buildings belonging to Office and Education category. The results highlight that, considering the performance scores built upon the set of proposed KPIs, this innovative approach significantly enhances the accuracy of the benchmarking process when it is compared with a conventional approach only based on the comparison with the buildings belonging to the same PSU. As a matter of fact, an average variation of about 14% for the calculated performance scores is observed for a testing set of buildings.

Suggested Citation

  • Piscitelli, Marco Savino & Giudice, Rocco & Capozzoli, Alfonso, 2024. "A holistic time series-based energy benchmarking framework for applications in large stocks of buildings," Applied Energy, Elsevier, vol. 357(C).
  • Handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923019141
    DOI: 10.1016/j.apenergy.2023.122550
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923019141
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122550?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923019141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.