IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v357y2024ics0306261923018883.html
   My bibliography  Save this article

A disposable cup inspired smart floor for trajectory recognition and human-interactive sensing

Author

Listed:
  • Zhao, Lin-Chuan
  • Zhou, Teng
  • Chang, Si-Deng
  • Zou, Hong-Xiang
  • Gao, Qiu-Hua
  • Wu, Zhi-Yuan
  • Yan, Ge
  • Wei, Ke-Xiang
  • Yeatman, Eric M.
  • Meng, Guang
  • Zhang, Wen-Ming

Abstract

Smart floor is an indispensable component of future smart buildings, it is urgent to develop a low-cost, self-powered, and high reliability smart floor. Herein, we propose a disposable cups inspired self-powered smart floor (DCIS-floor) for trajectory recognition and human-interactive sensing. The conical surface of the cup-shaped triboelectric nanogenerator (TENG) is greater than the projected area, resulting in an increased working area of functional materials on a limited floor. This enables more power generation units to be arranged on the limited floor while ensuring that each unit can generate sufficient electricity. Both pressure and shear force are applied as two conical surfaces contact, increasing the degree of contact between functional materials while avoiding excessive frictional force and wear during working process. Compared to cylindrical structures, conical structures offer greater flexibility in contact-separation without intricate machining and assembly, which is ideal for efficient large-area manufacturing. In the experiments, DCIS-floor achieves object motion trajectory recognition, visual recognition based trajectory wireless sensing, and pressure distribution sensing functions. Utilizing a convolutional neural network for data analysis, DCIS-floor realizes personnel identification. This work provides an effective method for smart floors in the safety monitoring, intelligent identification, and emergency rescue of future smart buildings.

Suggested Citation

  • Zhao, Lin-Chuan & Zhou, Teng & Chang, Si-Deng & Zou, Hong-Xiang & Gao, Qiu-Hua & Wu, Zhi-Yuan & Yan, Ge & Wei, Ke-Xiang & Yeatman, Eric M. & Meng, Guang & Zhang, Wen-Ming, 2024. "A disposable cup inspired smart floor for trajectory recognition and human-interactive sensing," Applied Energy, Elsevier, vol. 357(C).
  • Handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923018883
    DOI: 10.1016/j.apenergy.2023.122524
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923018883
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122524?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923018883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.