IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v357y2024ics030626192301886x.html
   My bibliography  Save this article

Simple fuzzy logic-based energy management for power exchange in isolated multi-microgrid systems: A case study in a remote community in the Amazon region of Ecuador

Author

Listed:
  • Rodriguez, Mauricio
  • Arcos-Aviles, Diego
  • Guinjoan, Francesc

Abstract

Nowadays, the increase in electric power coverage worldwide is a priority scope of the study, where Microgrids (MG) emerge as feasible solutions to supply electricity. The use of MG to provide energy to isolated communities, especially its use as Isolated Multi-Microgrid (IMMG) systems, has become an object of study worldwide. Different control techniques have been developed to improve and optimize the energy management system (EMS) associated with an isolated MG and new alternatives for energy exchange between IMMGs. However, the geographical location of a possible implementation of an MG directly affects the optimal dimensioning, the operating cost, and the environmental impact, among others. In this context, this work proposes a novel design of an EMS based on a fuzzy logic controller focusing on power exchange between IMMG systems. The proposed EMS aims to minimize the consumption of fossil fuels, reduce the total energy wasted by the power generation units, and keep the state-of-charge of the energy storage system (ESS) at safe levels to extend its useful life. Moreover, an ESS state of health analysis is presented to determine its degradation over time when applying the proposed EMS. In addition, the proposed EMS considers the uncertainties in the disconnection of any MG, ensuring the independent operation of each one. Simulation results are performed for a case study of an isolated community in the Amazon region of Ecuador. For this purpose, a group of microgrids is considered in three different scenarios. In the first scenario, there is no power exchange between the microgrids. In the second scenario, the microgrids exchange power using a simple EMS based on a set of analytical rules, and in the third scenario, the microgrids exchange power using the proposed EMS. The results show an improvement in the overall performance of the third scenario compared to the first two, both in reducing the energy wasted by the PV system and in the cost of fossil fuel. Finally, the experimental validation, using Typhoon Hardware-in-the-loop HIL-402 devices in real-time operation, highlights the proposed EMS's effectiveness and feasibility for IMMG systems.

Suggested Citation

  • Rodriguez, Mauricio & Arcos-Aviles, Diego & Guinjoan, Francesc, 2024. "Simple fuzzy logic-based energy management for power exchange in isolated multi-microgrid systems: A case study in a remote community in the Amazon region of Ecuador," Applied Energy, Elsevier, vol. 357(C).
  • Handle: RePEc:eee:appene:v:357:y:2024:i:c:s030626192301886x
    DOI: 10.1016/j.apenergy.2023.122522
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192301886X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122522?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paweł Pijarski & Adrian Belowski, 2024. "Application of Methods Based on Artificial Intelligence and Optimisation in Power Engineering—Introduction to the Special Issue," Energies, MDPI, vol. 17(2), pages 1-42, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:357:y:2024:i:c:s030626192301886x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.