IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v357y2024ics0306261923018834.html
   My bibliography  Save this article

A novel generalized prognostic method of proton exchange membrane fuel cell using multi-point estimation under various operating conditions

Author

Listed:
  • Zhang, Zhendong
  • He, Hongwen
  • Wang, Yaxiong
  • Quan, Shengwei
  • Chen, Jinzhou
  • Han, Ruoyan

Abstract

The proton exchange membrane fuel cell has been introduced into the fields of transportation, power production, and mobile devices. Especially, priority is given to promoting the application in commercial vehicles. However, more severe fluctuations in power demands give new challenges to the lifespan of fuel cells. The accurate state estimation and reasonable degradation prediction can assist in improving the lifetime of fuel cell devices. To realize the on-road prediction, herein, a novel generalized prognostic method called the Multi-point Square-root central difference Kalman filter (MP-SRCDKF) is proposed. First of all, an extended mathematical model is introduced. Later, the sensitivity analysis and parameter recognition are conducted based on the Sobol’ method and the jellyfish searching algorithm. The performance of the SRCDKF method is compared under static and quasi-dynamic conditions, which is further extended into the road condition and verified under the dynamic cycle condition temporarily. In the end, the remaining useful life prediction under various operating conditions is discussed. Furthermore, the generalized method can provide an approach for prognostic decision-making and the updating of the dynamic polarization curve to expand the lifetime and optimize the control system.

Suggested Citation

  • Zhang, Zhendong & He, Hongwen & Wang, Yaxiong & Quan, Shengwei & Chen, Jinzhou & Han, Ruoyan, 2024. "A novel generalized prognostic method of proton exchange membrane fuel cell using multi-point estimation under various operating conditions," Applied Energy, Elsevier, vol. 357(C).
  • Handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923018834
    DOI: 10.1016/j.apenergy.2023.122519
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923018834
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122519?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923018834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.