IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v357y2024ics0306261923018706.html
   My bibliography  Save this article

Modelling, simulation, and optimisation of a novel liquid piston system for energy recovery

Author

Listed:
  • Aliaga, D.M.
  • Romero, C.P.
  • Feick, R.
  • Brooks, W.K.
  • Campbell, A.N.

Abstract

A simple, scalable, and efficient method is proposed to extract energy from a pressurised gas flow to generate electrical power. The proposed liquid piston system is fed continuously with air into the piston chamber, which is filled with water. The water is driven by the gas’s expansion, and their interaction enables an isothermal expansion. A dynamic model was developed in gPROMS and validated against 300 W and 4 kW experimental data. The accuracy of the power output predictions has a maximum discrepancy of less than 6.4% from the experimental values. Subsequently, a sensitivity analysis and optimisation using the height to diameter piston geometry ratio was performed to study the variation in the thermal efficiency. The simulations were performed for energy systems from 300 kW to 100 MW and for several intake gas temperatures. The study shows that lower piston geometry ratios of 4 are preferred for 300 kW and 1 MW case studies. Because of reduced heat transfer between water and air, these systems reach 92.5% thermal efficiency. Moreover, the predicted thermal efficiencies for high power ratings were as high as 82%. The power output values obtained were constant in time. Finally, an energy and exergy assessment and worst-case scenario with decreased turbo machinery efficiency are presented. The proposed method matches the specific power of traditional power cycles and has potential uses for energy recovery in cryogenic plants.

Suggested Citation

  • Aliaga, D.M. & Romero, C.P. & Feick, R. & Brooks, W.K. & Campbell, A.N., 2024. "Modelling, simulation, and optimisation of a novel liquid piston system for energy recovery," Applied Energy, Elsevier, vol. 357(C).
  • Handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923018706
    DOI: 10.1016/j.apenergy.2023.122506
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923018706
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122506?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923018706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.