IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v357y2024ics0306261923018482.html
   My bibliography  Save this article

Hydrogen for harvesting the potential of offshore wind: A North Sea case study

Author

Listed:
  • Bødal, Espen Flo
  • Holm, Sigmund Eggen
  • Subramanian, Avinash
  • Durakovic, Goran
  • Pinel, Dimitri
  • Hellemo, Lars
  • Ortiz, Miguel Muñoz
  • Knudsen, Brage Rugstad
  • Straus, Julian

Abstract

Economical offshore wind developments depend on alternatives for cost-efficient transmission of the generated energy to connecting markets. Distance to shore, availability of an offshore power grid and scale of the wind farm may impede export through power cables. Conversion to H2 through offshore electrolysis may for certain offshore wind assets be a future option to enable energy export. Here, we analyse the cost sensitivity of offshore electrolysis for harvesting offshore wind in the North Sea using a technology-detailed multi-carrier energy system modelling framework for analysis of energy export. We include multiple investment options for electric power and hydrogen export including HVDC cables, new hydrogen pipelines, tie-in to existing pipelines and pipelines with linepacking. Existing hydropower is included in the modelling, and the effect on offshore electrolysis from increased pumping capacity in the hydropower system is analysed. Considering the lack of empirical cost data on offshore electrolysis, as well as the high uncertainty in future electricity and H2 prices, we analyse the cost sensitivity of offshore electrolysis in the North Sea by comparing costs relative to onshore electrolysis and energy prices relative to a nominal scenario. Offshore electrolysis is shown to be particularly sensitive to the electricity price, and an electricity price of 1.5 times the baseline assumption was needed to provide sufficient offshore energy for any significant offshore electrolysis investments. On the other hand, too high electricity prices would have a negative impact on offshore electrolysis because the energy is more valuable as electricity, even at the cost of increased wind power curtailment. This shows that there is a window-of-opportunity in terms of onshore electricity where offshore electrolysis can play a significant role in the production of H2. Pumped hydropower increases the maximum installed offshore electrolysis at the optimal electricity and H2 prices and makes offshore electrolysis more competitive at low electricity prices. Linepacking can make offshore electrolysis investments more robust against low H2 and high electricity prices as it allow for more variable H2 production through storing excess energy from offshore. The increased electrolysis capacity needed for variable electrolyser operation and linepacking is installed onshore due to its lower CAPEX compared to offshore installations.

Suggested Citation

  • Bødal, Espen Flo & Holm, Sigmund Eggen & Subramanian, Avinash & Durakovic, Goran & Pinel, Dimitri & Hellemo, Lars & Ortiz, Miguel Muñoz & Knudsen, Brage Rugstad & Straus, Julian, 2024. "Hydrogen for harvesting the potential of offshore wind: A North Sea case study," Applied Energy, Elsevier, vol. 357(C).
  • Handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923018482
    DOI: 10.1016/j.apenergy.2023.122484
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923018482
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122484?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923018482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.