IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v357y2024ics0306261923018457.html
   My bibliography  Save this article

Deep learning-based vibration stress and fatigue-life prediction of a battery-pack system

Author

Listed:
  • Zhang, Xiaoxi
  • Pan, Yongjun
  • Xiong, Yue
  • Zhang, Yongzhi
  • Tang, Mao
  • Dai, Wei
  • Liu, Binghe
  • Hou, Liang

Abstract

The primary concerns of the automotive industry are structural integrity and battery-pack system (BPS) reliability. To ascertain the appropriate thickness of critical BPS components (e.g., the long bracket, crossbeam, and bottom shell), engineers are required to perform several simulations of finite element (FE) analysis. This procedure is laborious and requires a significant amount of time. This study introduces a very effective approach for predicting vibration-induced stress and fatigue life, intending to enhance dependability in the design process. Firstly, a three-layer lithium battery model is utilized to investigate the impact of vibration on the maximal Mises stress at various states of charge. This information is used to model the BPS, including the batteries. The nonlinear FE model of the BPS is validated using the modal test results. Secondly, a sensitivity analysis is performed to ascertain the impact of component thickness on the maximum Mises stress. For vibration simulations, multiple design variables are selected to collect data. Next, the nonlinear relationship between inputs (thicknesses of critical components) and outputs (maximum Mises stress and minimum fatigue life) is described using a deep learning (DL) modeling framework with forward and backward propagation. Finally, the accuracy of the DL model is assessed by measuring error functions and comparing its performance to six commonly employed methods. Furthermore, the inclusion of Gaussian noise is employed to assess the model’s robustness and ability to generalize. Additionally, the establishment of fatigue-life and stress boundaries serves to offer designers valuable insights. The results indicate that the proposed method for predicting vibration stress and fatigue life is highly efficient and cost-effective, making it useful for the design of a robust and reliable BPS.

Suggested Citation

  • Zhang, Xiaoxi & Pan, Yongjun & Xiong, Yue & Zhang, Yongzhi & Tang, Mao & Dai, Wei & Liu, Binghe & Hou, Liang, 2024. "Deep learning-based vibration stress and fatigue-life prediction of a battery-pack system," Applied Energy, Elsevier, vol. 357(C).
  • Handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923018457
    DOI: 10.1016/j.apenergy.2023.122481
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923018457
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122481?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923018457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.