IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v357y2024ics030626192301841x.html
   My bibliography  Save this article

Modeling and optimal operation of reversible solid oxide cells considering heat recovery and mode switching dynamics in microgrids

Author

Listed:
  • Huang, Chunjun
  • Strbac, Goran
  • Zong, Yi
  • You, Shi
  • Træholt, Chresten
  • Brandon, Nigel
  • Wang, Jiawei
  • Ameli, Hossein

Abstract

The reversible solid oxide cell (rSOC) is a promising technology for advancing energy decarbonization by enabling bidirectional conversion between electricity and hydrogen in a single device. However, previous studies have not fully explored the operational flexibility of rSOCs due to inadequate consideration of heat recovery potentials and dynamics of operating mode transitions. To address this research gap, this paper presents a model-based optimal operation method for managing multi-energy transactions in rSOC-based microgrids, aiming to minimize operation costs. The method incorporates detailed operational models of the rSOC, including a lumped thermal model to account for heat recovery capability and modeling of various operating modes and their transitions. Additionally, a linearization process is introduced to address nonlinear and implicit operational constraints, resulting in a computationally efficient mixed-integer linear programming (MILP) formulation for the operation model. Comparative case studies are conducted using modified energy portfolios of a Danish energy island. The results demonstrate that the proposed method effectively captures operating mode transitions within the rSOC and enhances its profitability via waste heat recovery. Notably, the rSOC model contributes to enhanced operational flexibility through heat recovery behaviors and a wider temperature range, resulting in substantial economic savings for the microgrid.

Suggested Citation

  • Huang, Chunjun & Strbac, Goran & Zong, Yi & You, Shi & Træholt, Chresten & Brandon, Nigel & Wang, Jiawei & Ameli, Hossein, 2024. "Modeling and optimal operation of reversible solid oxide cells considering heat recovery and mode switching dynamics in microgrids," Applied Energy, Elsevier, vol. 357(C).
  • Handle: RePEc:eee:appene:v:357:y:2024:i:c:s030626192301841x
    DOI: 10.1016/j.apenergy.2023.122477
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192301841X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122477?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:357:y:2024:i:c:s030626192301841x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.