IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v357y2024ics0306261923018019.html
   My bibliography  Save this article

Exploring the GHG reduction potential of pilot diesel-ignited ammonia engines - Effects of diesel injection timing and ammonia energetic ratio

Author

Listed:
  • Wang, Xinran
  • Li, Tie
  • Chen, Run
  • Li, Shiyan
  • Kuang, Min
  • Lv, Yibin
  • Wang, Yu
  • Rao, Honghua
  • Liu, Yanzhao
  • Lv, Xiaodong

Abstract

Ammonia-diesel dual-fuel engines have been demonstrated as a promising technology to reduce the greenhouse gas (GHG) emissions. However, understandings of the operational boundaries and combustion mechanism in the ammonia-diesel dual-fuel engines are far from adequate, and the published works are mostly done with relatively low ammonia substitution ratios. To bridge the gap between the technology status and the potential in engineering applications, a series of engine bench tests of the pilot diesel-ignited ammonia combustion with detailed analysis of the combustion performance and exhaust gas emissions are conducted in this study to explore the GHG reduction potential. As the first report, the effects of the diesel injection timing and ammonia energetic ratio on the performance and exhaust gas emissions of the dual-fuel engine at various loads and a fixed speed are evaluated in this paper. As the ammonia energetic ratio increases, the diesel injection timing for the stable engine operation becomes narrower. Increasing the ammonia energetic ratio decreases the indicated thermal efficiency. The ammonia-diesel dual-fuel engine can maintain the stable of COVIMEP below 3% at a wide ammonia energetic ratio range, the indicated thermal efficiency with the tested upmost 90% ammonia energetic ratio can reach about 34% if an optimized diesel injection timing is implemented. The unburned ammonia increases linearly with the ammonia energetic ratio while the unburned ammonia ratios of total input ammonia are similar at the different ammonia energetic ratios. In comparison to the conventional pure-diesel mode, while the CO2 emission decreases by 50% and 72%, the equivalent CO2 emission (i.e., CO2 + 265 N2O, labelled as CO2e) decreases by 24% and 55% at the 60% and 80% ammonia energetic ratios in the ammonia-diesel mode, respectively. In the ammonia-diesel dual-fuel mode, the specific CO2e, N2O and unburned ammonia decrease with the engine load increasing from 50% to 100%, while the highest indicated thermal efficiency is reached at the 75% load.

Suggested Citation

  • Wang, Xinran & Li, Tie & Chen, Run & Li, Shiyan & Kuang, Min & Lv, Yibin & Wang, Yu & Rao, Honghua & Liu, Yanzhao & Lv, Xiaodong, 2024. "Exploring the GHG reduction potential of pilot diesel-ignited ammonia engines - Effects of diesel injection timing and ammonia energetic ratio," Applied Energy, Elsevier, vol. 357(C).
  • Handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923018019
    DOI: 10.1016/j.apenergy.2023.122437
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923018019
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122437?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923018019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.