IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v357y2024ics0306261923013946.html
   My bibliography  Save this article

A novel in-tube reformer for solid oxide fuel cell for performance improvement and efficient thermal management: A numerical study based on artificial neural network and genetic algorithm

Author

Listed:
  • Wang, Chen
  • He, Qijiao
  • Li, Zheng
  • Yu, Jie
  • Bello, Idris Temitope
  • Zheng, Keqing
  • Han, Minfang
  • Ni, Meng

Abstract

The pursuit of higher power density and compact structure presents a critical challenge to the thermal management of solid oxide fuel cell. In this study, a novel in-tube reformer is proposed and a Multi-physics simulation-Artificial neural network-Multi-objective genetic algorism based optimization framework is developed to improve the output performance and reduce the internal temperature difference in solid oxide fuel cell. First, a validated multi-physics model is developed for parametric simulation and generating dataset. Afterwards, a surrogate model is obtained by training an artificial neural network to predict the output performance and internal temperature field of solid oxide fuel cell. Finally, multi-objective genetic algorithm optimizations based on the surrogate model are performed to maximize the output performance and minimize the internal temperature difference under different operation strategies. It is found that compared to the conventional configuration (without in-tube reformer), the use of in-tube reformer can effectively promote the electrochemical reactions, increase the fuel utilization (up to 34.2%) and current density (up to 14.5%) while significantly reducing the maximum temperature difference (up to 85.5%) in the cell, resulting in a uniform current density and temperature distribution along the cell. The proposed novel in-tube reformer and optimization framework are demonstrated to be highly powerful and can be easily applied to other fuel cell/electrolyzer systems to effectively improve system performance and realize efficient thermal management under actual demands.

Suggested Citation

  • Wang, Chen & He, Qijiao & Li, Zheng & Yu, Jie & Bello, Idris Temitope & Zheng, Keqing & Han, Minfang & Ni, Meng, 2024. "A novel in-tube reformer for solid oxide fuel cell for performance improvement and efficient thermal management: A numerical study based on artificial neural network and genetic algorithm," Applied Energy, Elsevier, vol. 357(C).
  • Handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923013946
    DOI: 10.1016/j.apenergy.2023.122030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923013946
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923013946. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.