IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v357y2024ics0306261923010863.html
   My bibliography  Save this article

Examining the impact of energy efficiency retrofits and vegetation on energy performance of institutional buildings: An equity-driven analysis

Author

Listed:
  • Excell, Lauren E.
  • Jain, Rishee K.

Abstract

Inequities in the built environment have long persisted in communities around the world. Prior studies have exposed that energy retrofit programs invest inequitably in residential buildings, leaving racial minorities with disproportionately less energy inefficient homes, regardless of income level. This inequity in energy performance and retrofit investments has yet to be studied for commercial and institutional buildings. Further research has shown that tree canopy coverage and vegetation is less dense in historically disadvantaged communities, contributing to a greater urban heat island effect and corresponding higher energy consumption for cooling compared to historically advantaged communities. Moreover, there is limited albeit emerging research that utilizes granular socioeconomic data with fine temporal scale energy consumption data to help identify energy inequalities among race and income groups. This paper examines the differential impact of energy efficiency retrofit installation on energy performance between advantaged vs. disadvantaged groups using data from U.S. public school buildings. Additionally, it studies how the effect of retrofits is compounded by the presence of vegetation surrounding the building. Utilizing hourly interval smart meter data from primary and secondary school buildings in California, the impact of retrofits are quantified using three energy metrics. Then the disparities in retrofit impact for advantaged vs. disadvantaged groups (as defined by three equity metrics) are evaluated using school-level demographic data. Lastly, regression on the percent change in monthly energy consumption from the pre-retrofit to post-retrofit period is used to quantify the incremental benefits of retrofits compounded by vegetation. Findings show that energy efficiency retrofits can improve energy performance and reduce energy inequities. Specifically, retrofits significantly increase energy efficiency and reduce the energy efficiency equity gap by up to 198%. Evidence shows that vegetation surrounding a building has a synergistic effect with mechanical retrofits for reducing energy consumption in respect to reduced cooling loads, even in cases where mechanical retrofits alone resulted in significant increases in energy consumption. Dense vegetation provides around 6% energy savings, similar in magnitude to savings from mechanical retrofit installation. This validates the effectiveness of retrofits for reducing energy consumption and improving energy equity, and demonstrates the ability of vegetation to provide additional energy savings beyond mechanical interventions.

Suggested Citation

  • Excell, Lauren E. & Jain, Rishee K., 2024. "Examining the impact of energy efficiency retrofits and vegetation on energy performance of institutional buildings: An equity-driven analysis," Applied Energy, Elsevier, vol. 357(C).
  • Handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923010863
    DOI: 10.1016/j.apenergy.2023.121722
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923010863
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121722?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923010863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.