IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v356y2024ics0306261923017646.html
   My bibliography  Save this article

Archery-inspired catapult mechanism with controllable energy release for efficient ultralow-frequency energy harvesting

Author

Listed:
  • Wang, Zhen
  • Fan, Kangqi
  • Zhao, Shizhong
  • Wu, Shuxin
  • Zhang, Xuan
  • Zhai, Kangjia
  • Li, Zhiqi
  • He, Hua

Abstract

Ultralow-frequency (< 5 Hz) vibration energy is abundant in the environment, but its efficient utilization is still highly difficult due to the frequency-mismatch problem encountered by the vibratory energy harvesters and the slow rotation of rotary energy harvesters (REHs). To solve this issue, we developed herein a high-performance REH (named AI-REH) based on the archery-inspired catapult mechanism, which breaks through the limitation of the slow vibration source to the REH rotation speed through an innovative magnetic coupling strategy between the vibration source and the AI-REH. By employing an accumulator spring as the energy reservoir, the AI-REH also realizes the accumulation and controllable release of ultralow-frequency vibration energy via the interaction between the magnetic coupling and the elastic force. High-speed kinetic energy can thus be acquired for efficiently powering the rotor, contributing to significantly accelerated rotor speeds and enhanced electric outputs. Compared with the traditional counterpart, the AI-REH achieves 3.6-fold increase in rotor speed, 3.5-fold increase in output voltage and 3.0-fold increase in output power under an ultralow-frequency vibration of 4 Hz. A power backpack was also constructed and tested, which demonstrates the superior capability of the AI-REH in harnessing real ultralow-frequency amplitude-varying vibration energy. The AI-REH proposed in this study provides a new pathway for efficiently exploiting environmental ultralow-frequency vibration energy toward self-sufficient systems with various purposes.

Suggested Citation

  • Wang, Zhen & Fan, Kangqi & Zhao, Shizhong & Wu, Shuxin & Zhang, Xuan & Zhai, Kangjia & Li, Zhiqi & He, Hua, 2024. "Archery-inspired catapult mechanism with controllable energy release for efficient ultralow-frequency energy harvesting," Applied Energy, Elsevier, vol. 356(C).
  • Handle: RePEc:eee:appene:v:356:y:2024:i:c:s0306261923017646
    DOI: 10.1016/j.apenergy.2023.122400
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923017646
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122400?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:356:y:2024:i:c:s0306261923017646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.