IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v356y2024ics0306261923017415.html
   My bibliography  Save this article

Incorporating biochar into fuels system of iron and steel industry: carbon emission reduction potential and economic analysis

Author

Listed:
  • Meng, Fan
  • Rong, Guoqiang
  • Zhao, Ruiji
  • Chen, Bo
  • Xu, Xiaoyun
  • Qiu, Hao
  • Cao, Xinde
  • Zhao, Ling

Abstract

Biochar as a prospective renewable energy candidate could be incorporated into the iron and steel production system to replace part of fossil fuels and reduce high-intensity greenhouse gas emissions. However, great uncertainties still exist on biochar's emission reduction capacity and economic feasibility, depending on different biochar precursors, substitution scenarios, energy consumption of biochar production and financial cost. This study aimed to explore the optimized substitution strategies concerning the above issues. A systematic carbon accounting was performed by material flow analysis method (MFA). Two biochar incorporated iron and steel production routes, integrated production route (BF-BOF) and short production route (EAF), which took the proportion of 71.5% and 28.2% in worldwide production, were considered. CO2 Supply Curve (CSC) was conducted to carry out a quantitative economic viability analysis of biochar substitution under carbon emission trading schemes (ETS). Results showed that compared with straw-based biochar, wood-based biochar showed stronger carbon reduction capacity of 1.47 t CO2e (CO2-equivalent) /t crude steel, and the reduction potential reached 66.94% mostly. Among all the steel production processes, Blast furnace in BF-BOF route had the largest emission contribution proportion (72.06%), achieving the best GWP100 reduction potential of 73.66%. The incorporation of wood-based biochar in sintering (−0.037 yuan/t CO2e) was selected as the scenario with both reduction potential and economic viability. If the scenario was fully implemented in China, it could reduce 2.01 million tons of CO2e in 2021. This study would play a vital role in guiding iron and steel industry for biochar substituted fuels.

Suggested Citation

  • Meng, Fan & Rong, Guoqiang & Zhao, Ruiji & Chen, Bo & Xu, Xiaoyun & Qiu, Hao & Cao, Xinde & Zhao, Ling, 2024. "Incorporating biochar into fuels system of iron and steel industry: carbon emission reduction potential and economic analysis," Applied Energy, Elsevier, vol. 356(C).
  • Handle: RePEc:eee:appene:v:356:y:2024:i:c:s0306261923017415
    DOI: 10.1016/j.apenergy.2023.122377
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923017415
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122377?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:356:y:2024:i:c:s0306261923017415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.