IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v356y2024ics0306261923017348.html
   My bibliography  Save this article

A high performance contra-rotating energy harvester and its wireless sensing application toward green and maintain free vehicle monitoring

Author

Listed:
  • Wang, Zhixia
  • Du, Hongzhi
  • Wang, Wei
  • Zhang, Qichang
  • Gu, Fengshou
  • Ball, Andrew D.
  • Liu, Cheng
  • Jiao, Xuanbo
  • Qiu, Hongyun
  • Shi, Dawei

Abstract

Intelligent transportation necessitates advanced perception and cognitive systems that can provide continuous feedback from the vehicle. However, sensors relying on batteries face challenges such as high maintenance costs and environmental issues due to the limited lifespan of the power source. To overcome these challenges, this paper reports an efficient battery-free solution for transportation monitoring. The solution utilizes a speed-amplified rotary energy harvester (SAREH) to power various wireless Bluetooth sensors, enabling continuous monitoring of the vehicle's motion state. The SAREH combines a contra-rotating mechanism with a friction pendulum, resulting in excellent power output in a compact design. Experimental results demonstrate the ability of SAREH to extract power from vehicles operating at speeds ranging from 180 to 1260 rpm. The maximum power output and corresponding power density are measured as 712 mW and 34 mW cm−3, respectively. The prototype successfully powers portable electronics and supports battery-free navigation, triaxial acceleration, and temperature multi-sensors during real road and railway simulation tests. Additionally, the SAREH operates as a highly sensitive speed sensor and an early-warning system for detecting the vehicle's motion state. These results represent a significant advancement in intelligent transportation systems by showcasing the practicality of self-powered wireless monitoring capabilities on vehicles.

Suggested Citation

  • Wang, Zhixia & Du, Hongzhi & Wang, Wei & Zhang, Qichang & Gu, Fengshou & Ball, Andrew D. & Liu, Cheng & Jiao, Xuanbo & Qiu, Hongyun & Shi, Dawei, 2024. "A high performance contra-rotating energy harvester and its wireless sensing application toward green and maintain free vehicle monitoring," Applied Energy, Elsevier, vol. 356(C).
  • Handle: RePEc:eee:appene:v:356:y:2024:i:c:s0306261923017348
    DOI: 10.1016/j.apenergy.2023.122370
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923017348
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122370?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:356:y:2024:i:c:s0306261923017348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.