IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v356y2024ics0306261923017257.html
   My bibliography  Save this article

Numerical study of heterogeneous condensation in the de Laval nozzle to guide the compressor performance optimization in a compressed air energy storage system

Author

Listed:
  • Zhang, Guojie
  • Yang, Yifan
  • Chen, Jiaheng
  • Jin, Zunlong
  • Dykas, Sławomir

Abstract

Compressed air energy storage technology (CAES) has an enormous possibilities in terms of energy conversation, environmental protection, and economic benefits. Air compressor, as a core component, is of great significance for the CAES system efficiency. The impact of the non-equilibrium condensation of steam contained in the air on the blade erosion and thermal efficiency drop in the compressor is not to be missed. The compressor flow characteristics in blade-to-blade channels can be reproduced by the flow in the Laval nozzle, which can verify the accuracy of the condensation model based on similar flow characteristics and subcooling conditions in the non-equilibrium condensation flow. Firstly, the homogeneous condensation flow is numerically investigated by different condensation models, and the Blend model is used to investigate the heterogeneous condensation because of its higher accuracy. Secondly, the physical properties in the heterogeneous condensing flow are analyzed in detail by the particles number, radius, and types. The result presents that the foreign particles promote the heterogeneous condensation while the homogeneous condensation is weakened. Finally, the flow loss coefficients and thermal efficiency are calculated, and the guide to optimize compressor operation is proposed. It is concluded the heterogeneous condensation with liquid droplets as condensation nuclei can weaken the non-equilibrium condensation greatly and reach a higher thermal efficiency compared to the heterogeneous condensation with solid particles as condensation nuclei. The huge amount of air mass flow rate in compressors and expanders used in the CAES systems makes it difficult to filter out the solid particles and to dry air therefore, investigating the impact of steam condensation on the flow characteristics is recommended.

Suggested Citation

  • Zhang, Guojie & Yang, Yifan & Chen, Jiaheng & Jin, Zunlong & Dykas, Sławomir, 2024. "Numerical study of heterogeneous condensation in the de Laval nozzle to guide the compressor performance optimization in a compressed air energy storage system," Applied Energy, Elsevier, vol. 356(C).
  • Handle: RePEc:eee:appene:v:356:y:2024:i:c:s0306261923017257
    DOI: 10.1016/j.apenergy.2023.122361
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923017257
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122361?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:356:y:2024:i:c:s0306261923017257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.