IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v356y2024ics0306261923017208.html
   My bibliography  Save this article

Integrating active learning and semi-supervised learning for improved data-driven HVAC fault diagnosis performance

Author

Listed:
  • Fan, Cheng
  • Wu, Qiuting
  • Zhao, Yang
  • Mo, Like

Abstract

Data-driven methods have drawn increasing interests in HVAC fault diagnosis tasks due to their intrinsic advantages in making real-time automated decisions. To ensure the reliability of data-driven models, it is essential to prepare sufficient labeled data for predictive modeling. In practice, it can be very time-consuming and labor-intensive to determine the actual operating condition or label of each data sample (e.g., Normal or Faulty), making it highly challenging to develop robust data-driven solutions through conventional supervised learning methods. To tackle such challenges, this study proposes a data analytic framework to integrate active learning and semi-supervised learning to utilize massive unlabeled data for improved fault diagnosis performance. More specifically, five active learning methods have been tested to quantify their effectiveness in discovering valuable unlabeled data for expert labeling. Semi-supervised data-driven models have been developed to enable autonomous knowledge discovery from unlabeled building operational data through self-training protocols. Data experiments have been conducted to explore the separated and integrated values of active and semi-supervised learning. The results show that active learning can effectively identify valuable data samples for fault diagnosis and thereby, reducing approximately 50% labeling costs. Cost-effective combinatorial strategies have been derived to integrate active learning and semi-supervised learning for practical applications. The research outcomes are valuable for developing advanced data-driven solutions with substantial decreases in manual costs.

Suggested Citation

  • Fan, Cheng & Wu, Qiuting & Zhao, Yang & Mo, Like, 2024. "Integrating active learning and semi-supervised learning for improved data-driven HVAC fault diagnosis performance," Applied Energy, Elsevier, vol. 356(C).
  • Handle: RePEc:eee:appene:v:356:y:2024:i:c:s0306261923017208
    DOI: 10.1016/j.apenergy.2023.122356
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923017208
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122356?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:356:y:2024:i:c:s0306261923017208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.