IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v356y2024ics0306261923016768.html
   My bibliography  Save this article

Data-driven surrogate optimization for deploying heterogeneous multi-energy storage to improve demand response performance at building cluster level

Author

Listed:
  • Ren, Haoshan
  • Gao, Dian-ce
  • Ma, Zhenjun
  • Zhang, Sheng
  • Sun, Yongjun

Abstract

Energy storage such as battery and thermal energy storage is an effective approach to shift building peak load and alleviate grid stress at a building cluster level. However, due to the heterogeneous performance of different types of storage (e.g., response speed, charge/discharge efficiency and rate, storage capacity) and highly diversified energy use patterns of individual buildings, the multi-energy storage should be properly selected and optimally designed for individual buildings to achieve effective load shifting. The optimal deployment of multi-energy storage at a cluster level is a challenging optimization problem due to the nonlinear dynamic performance of the multi-energy storage and the high dimensionality as a result of a large number of buildings. To tackle the challenges, this study proposes a data-driven surrogate optimization method that optimally deploys multi-energy storage at a cluster level to minimize the building cluster energy bill under demand response programs. The method utilizes data-driven surrogate models to accurately predict demand response performance of individual buildings with multi-energy storage. An iterative optimization with automated energy-storage-option screening is developed to optimize the multi-energy storage configurations and design parameters. For a case study including 21 buildings, by optimally deploying multi-energy storage including battery, cooling TES tank, and building-integrated TES, the method reduced the building cluster energy bill by 8%–181% as compared to baseline cases. The optimal deployment method effectively identifies the buildings with better potential to adopt demand-side management and balances the pros and cons of the energy storage options, increasing demand response incentives by 12%–31%. The proposed method can be used in practice to facilitate the deployment of energy storage and improve engagement of buildings in demand response.

Suggested Citation

  • Ren, Haoshan & Gao, Dian-ce & Ma, Zhenjun & Zhang, Sheng & Sun, Yongjun, 2024. "Data-driven surrogate optimization for deploying heterogeneous multi-energy storage to improve demand response performance at building cluster level," Applied Energy, Elsevier, vol. 356(C).
  • Handle: RePEc:eee:appene:v:356:y:2024:i:c:s0306261923016768
    DOI: 10.1016/j.apenergy.2023.122312
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923016768
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122312?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:356:y:2024:i:c:s0306261923016768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.