IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipbs0306261923014678.html
   My bibliography  Save this article

New member of micro power sources for extreme environmental explorations: X-ray-voltaic batteries

Author

Listed:
  • Zhao, Yingying
  • Zhao, Chen
  • Li, Haibin
  • Ren, Jiwei
  • Zhou, Shuxing
  • Zhao, Yiying

Abstract

It has been a long-term challenge for radiation-voltaics to meet the power requirements of the fast-developed exploration activities in extreme environments such as deep sea, polar regions, and outer space. In this work, we demonstrated novel X-ray radiation-voltaic (X-ray-voltaic) batteries adopting SiC conversion units, which could improve the output power up to 3 orders of magnitude higher than that of state-of-the-art betavoltaics. A comprehensive model integrating the radioactive sources and semiconductor units was built to guide the design of X-ray voltaics. SiC devices with the optimal structure were fabricated and confirmed experimentally the accuracy of the device model. According to the model, the SiC X-ray-voltaics with 55Fe radioactive sources can achieve a highest output power of 19.10 μW/cm2 and a highest power efficiency (ηtotal) of 7.71%. The unique advantages of SiC X-ray-voltaic batteries including the excellent irradiation hardness, the superlong lifetime, and the outstanding prospects as power sources were discussed in details. This work reveals the promising potentials of the X-ray-voltaics for extreme environmental explorations and will inspire the further development of the high-performance isotope batteries.

Suggested Citation

  • Zhao, Yingying & Zhao, Chen & Li, Haibin & Ren, Jiwei & Zhou, Shuxing & Zhao, Yiying, 2024. "New member of micro power sources for extreme environmental explorations: X-ray-voltaic batteries," Applied Energy, Elsevier, vol. 353(PB).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923014678
    DOI: 10.1016/j.apenergy.2023.122103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923014678
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Kai & Tang, Xiaobin & Liu, Yunpeng & Xu, Zhiheng & Yuan, Zicheng & Ji, Dongxiao & Ramakrishna, Seeram, 2020. "Experimental optimization of small–scale structure–adjustable radioisotope thermoelectric generators," Applied Energy, Elsevier, vol. 280(C).
    2. Eugene B. Yakimov, 2023. "Prediction of Betavoltaic Battery Parameters," Energies, MDPI, vol. 16(9), pages 1-24, April.
    3. Dash, P.K. & Rekha Pattnaik, Smruti & N.V.D.V. Prasad, Eluri & Bisoi, Ranjeeta, 2023. "Detection and classification of DC and feeder faults in DC microgrid using new morphological operators with multi class AdaBoost algorithm," Applied Energy, Elsevier, vol. 340(C).
    4. Chaojiang Niu & Hongkyung Lee & Shuru Chen & Qiuyan Li & Jason Du & Wu Xu & Ji-Guang Zhang & M. Stanley Whittingham & Jie Xiao & Jun Liu, 2019. "High-energy lithium metal pouch cells with limited anode swelling and long stable cycles," Nature Energy, Nature, vol. 4(7), pages 551-559, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pietro Iurilli & Luigi Luppi & Claudio Brivio, 2022. "Non-Invasive Detection of Lithium-Metal Battery Degradation," Energies, MDPI, vol. 15(19), pages 1-14, September.
    2. Zhi Chang & Huijun Yang & Xingyu Zhu & Ping He & Haoshen Zhou, 2022. "A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Zhi Chang & Huijun Yang & Anqiang Pan & Ping He & Haoshen Zhou, 2022. "An improved 9 micron thick separator for a 350 Wh/kg lithium metal rechargeable pouch cell," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Yan Zhao & Tianhong Zhou & Timur Ashirov & Mario El Kazzi & Claudia Cancellieri & Lars P. H. Jeurgens & Jang Wook Choi & Ali Coskun, 2022. "Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Junyeob Moon & Dong Ok Kim & Lieven Bekaert & Munsoo Song & Jinkyu Chung & Danwon Lee & Annick Hubin & Jongwoo Lim, 2022. "Non-fluorinated non-solvating cosolvent enabling superior performance of lithium metal negative electrode battery," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Minsung Baek & Jinyoung Kim & Kwanghoon Jeong & Seonmo Yang & Heejin Kim & Jimin Lee & Minkwan Kim & Ki Jae Kim & Jang Wook Choi, 2023. "Naked metallic skin for homo-epitaxial deposition in lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Feifei Wang & Jipeng Zhang & Haotian Lu & Hanbing Zhu & Zihui Chen & Lu Wang & Jinyang Yu & Conghui You & Wenhao Li & Jianwei Song & Zhe Weng & Chunpeng Yang & Quan-Hong Yang, 2023. "Production of gas-releasing electrolyte-replenishing Ah-scale zinc metal pouch cells with aqueous gel electrolyte," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. James T. Frith & Matthew J. Lacey & Ulderico Ulissi, 2023. "A non-academic perspective on the future of lithium-based batteries," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    9. Krzysztof Siczek, 2022. "Life-Related Hazards of Materials Applied to Mg–S Batteries," Energies, MDPI, vol. 15(4), pages 1-44, February.
    10. Chen, Wei-Hsin & Carrera Uribe, Manuel & Kwon, Eilhann E. & Lin, Kun-Yi Andrew & Park, Young-Kwon & Ding, Lu & Saw, Lip Huat, 2022. "A comprehensive review of thermoelectric generation optimization by statistical approach: Taguchi method, analysis of variance (ANOVA), and response surface methodology (RSM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    11. Hyeokjin Kwon & Hyun-Ji Choi & Jung-kyu Jang & Jinhong Lee & Jinkwan Jung & Wonjun Lee & Youngil Roh & Jaewon Baek & Dong Jae Shin & Ju-Hyuk Lee & Nam-Soon Choi & Ying Shirley Meng & Hee-Tak Kim, 2023. "Weakly coordinated Li ion in single-ion-conductor-based composite enabling low electrolyte content Li-metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Yawei Chen & Menghao Li & Yue Liu & Yulin Jie & Wanxia Li & Fanyang Huang & Xinpeng Li & Zixu He & Xiaodi Ren & Yunhua Chen & Xianhui Meng & Tao Cheng & Meng Gu & Shuhong Jiao & Ruiguo Cao, 2023. "Origin of dendrite-free lithium deposition in concentrated electrolytes," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Tomasz Miazga & Grzegorz Iwański & Marcin Nikoniuk, 2021. "Energy Conversion System and Control of Fuel-Cell and Battery-Based Hybrid Drive for Light Aircraft," Energies, MDPI, vol. 14(4), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923014678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.