IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v342y2023ics0306261923005123.html
   My bibliography  Save this article

A novel dynamic pricing model for a microgrid of prosumers with photovoltaic systems

Author

Listed:
  • Boiarkin, Veniamin
  • Rajarajan, Muttukrishnan
  • Al-Zaili, Jafar
  • Asif, Waqar

Abstract

Due to the growing demand for electricity and the increasing number of consumers who can produce energy (prosumers) using photovoltaic systems today, energy generated by prosumers can be utilized in the microgrid instead of selling it to the main utility grid. Pricing is one of the most important mechanisms for motivating prosumers to interact with each other in the microgrid. Many works have proposed different pricing models that mostly focus on optimizing prosumers’ behavior and energy usage costs. However, most of the proposed models require constant involvement of the end-user to adjust energy consumption profiles, which is not always possible in a real-world scenario. In this paper, a novel pricing model is presented with the aim of maximizing the utilization of energy generated in the microgrid and reducing the import of energy from the utility grid, whereas ensuring more beneficial prices for energy within the microgrid compared with the utility grid. Mathematical models based on the supply and demand ratio and prosumers’ absolute deviation from the predicted energy usage profiles are developed to determine the internal equilibrium price and the amount of energy each prosumer can buy and sell by interacting with the microgrid. To cover the energy transfer losses in the microgrid, a dynamic loss allocation mechanism is proposed. The proposed pricing model is validated using real energy usage profiles from 100 prosumers. The results show that the total energy usage cost can be decreased, whereas the amount of unused energy that is shared outside the microgrid is minimized.

Suggested Citation

  • Boiarkin, Veniamin & Rajarajan, Muttukrishnan & Al-Zaili, Jafar & Asif, Waqar, 2023. "A novel dynamic pricing model for a microgrid of prosumers with photovoltaic systems," Applied Energy, Elsevier, vol. 342(C).
  • Handle: RePEc:eee:appene:v:342:y:2023:i:c:s0306261923005123
    DOI: 10.1016/j.apenergy.2023.121148
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923005123
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alam, Muhammad Raisul & St-Hilaire, Marc & Kunz, Thomas, 2019. "Peer-to-peer energy trading among smart homes," Applied Energy, Elsevier, vol. 238(C), pages 1434-1443.
    2. Xu, Shuang & Zhao, Yong & Li, Yuanzheng & Zhou, Yue, 2021. "An iterative uniform-price auction mechanism for peer-to-peer energy trading in a community microgrid," Applied Energy, Elsevier, vol. 298(C).
    3. He, Li & Liu, Yuanzhi & Zhang, Jie, 2021. "Peer-to-peer energy sharing with battery storage: Energy pawn in the smart grid," Applied Energy, Elsevier, vol. 297(C).
    4. Ullah, Md Habib & Park, Jae-Do, 2022. "DLMP integrated P2P2G energy trading in distribution-level grid-interactive transactive energy systems," Applied Energy, Elsevier, vol. 312(C).
    5. Tushar, Wayes & Saha, Tapan Kumar & Yuen, Chau & Morstyn, Thomas & McCulloch, Malcolm D. & Poor, H. Vincent & Wood, Kristin L., 2019. "A motivational game-theoretic approach for peer-to-peer energy trading in the smart grid," Applied Energy, Elsevier, vol. 243(C), pages 10-20.
    6. Adamu Sani Yahaya & Nadeem Javaid & Fahad A. Alzahrani & Amjad Rehman & Ibrar Ullah & Affaf Shahid & Muhammad Shafiq, 2020. "Blockchain Based Sustainable Local Energy Trading Considering Home Energy Management and Demurrage Mechanism," Sustainability, MDPI, vol. 12(8), pages 1-28, April.
    7. Mehdinejad, Mehdi & Shayanfar, Heidarali & Mohammadi-Ivatloo, Behnam, 2022. "Peer-to-peer decentralized energy trading framework for retailers and prosumers," Applied Energy, Elsevier, vol. 308(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    2. Lyu, Cheng & Jia, Youwei & Xu, Zhao, 2021. "Fully decentralized peer-to-peer energy sharing framework for smart buildings with local battery system and aggregated electric vehicles," Applied Energy, Elsevier, vol. 299(C).
    3. Tsao, Yu-Chung & Thanh, Vo-Van, 2021. "Toward sustainable microgrids with blockchain technology-based peer-to-peer energy trading mechanism: A fuzzy meta-heuristic approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    4. Hu, Qian & Zhu, Ziqing & Bu, Siqi & Wing Chan, Ka & Li, Fangxing, 2021. "A multi-market nanogrid P2P energy and ancillary service trading paradigm: Mechanisms and implementations," Applied Energy, Elsevier, vol. 293(C).
    5. Soto, Esteban A. & Bosman, Lisa B. & Wollega, Ebisa & Leon-Salas, Walter D., 2021. "Peer-to-peer energy trading: A review of the literature," Applied Energy, Elsevier, vol. 283(C).
    6. Li, Shenglin & Zhu, Jizhong & Chen, Ziyu & Luo, Tengyan, 2021. "Double-layer energy management system based on energy sharing cloud for virtual residential microgrid," Applied Energy, Elsevier, vol. 282(PA).
    7. Esmat, Ayman & de Vos, Martijn & Ghiassi-Farrokhfal, Yashar & Palensky, Peter & Epema, Dick, 2021. "A novel decentralized platform for peer-to-peer energy trading market with blockchain technology," Applied Energy, Elsevier, vol. 282(PA).
    8. Adisorn Leelasantitham & Thammavich Wongsamerchue & Yod Sukamongkol, 2024. "Economic Pricing in Peer-to-Peer Electrical Trading for a Sustainable Electricity Supply Chain Industry in Thailand," Energies, MDPI, vol. 17(5), pages 1-19, March.
    9. Alaa A. F. Husain & Maryam Huda Ahmad Phesal & Mohd Zainal Abidin Ab Kadir & Ungku Anisa Ungku Amirulddin & Abdulhadi H. J. Junaidi, 2021. "A Decade of Transitioning Malaysia toward a High-Solar PV Energy Penetration Nation," Sustainability, MDPI, vol. 13(17), pages 1-16, September.
    10. Filipe Bandeiras & Álvaro Gomes & Mário Gomes & Paulo Coelho, 2023. "Exploring Energy Trading Markets in Smart Grid and Microgrid Systems and Their Implications for Sustainability in Smart Cities," Energies, MDPI, vol. 16(2), pages 1-41, January.
    11. Zhou, Yue & Wu, Jianzhong & Song, Guanyu & Long, Chao, 2020. "Framework design and optimal bidding strategy for ancillary service provision from a peer-to-peer energy trading community," Applied Energy, Elsevier, vol. 278(C).
    12. Qiu, Dawei & Ye, Yujian & Papadaskalopoulos, Dimitrios & Strbac, Goran, 2021. "Scalable coordinated management of peer-to-peer energy trading: A multi-cluster deep reinforcement learning approach," Applied Energy, Elsevier, vol. 292(C).
    13. Javier Parra-Domínguez & Esteban Sánchez & Ángel Ordóñez, 2023. "The Prosumer: A Systematic Review of the New Paradigm in Energy and Sustainable Development," Sustainability, MDPI, vol. 15(13), pages 1-44, July.
    14. Liu, Jia & Yang, Hongxing & Zhou, Yuekuan, 2021. "Peer-to-peer energy trading of net-zero energy communities with renewable energy systems integrating hydrogen vehicle storage," Applied Energy, Elsevier, vol. 298(C).
    15. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K., 2020. "Investigating the impact of P2P trading on power losses in grid-connected networks with prosumers," Applied Energy, Elsevier, vol. 263(C).
    16. Jiang, Yanni & Zhou, Kaile & Lu, Xinhui & Yang, Shanlin, 2020. "Electricity trading pricing among prosumers with game theory-based model in energy blockchain environment," Applied Energy, Elsevier, vol. 271(C).
    17. Luis Gomes & Hugo Morais & Calvin Gonçalves & Eduardo Gomes & Lucas Pereira & Zita Vale, 2022. "Impact of Forecasting Models Errors in a Peer-to-Peer Energy Sharing Market," Energies, MDPI, vol. 15(10), pages 1-18, May.
    18. Kanakadhurga, Dharmaraj & Prabaharan, Natarajan, 2022. "Peer-to-Peer trading with Demand Response using proposed smart bidding strategy," Applied Energy, Elsevier, vol. 327(C).
    19. Khan, Saad Salman & Ahmad, Sadiq & Naeem, Muhammad, 2023. "On-grid joint energy management and trading in uncertain environment," Applied Energy, Elsevier, vol. 330(PB).
    20. Zheng, Boshen & Wei, Wei & Chen, Yue & Wu, Qiuwei & Mei, Shengwei, 2022. "A peer-to-peer energy trading market embedded with residential shared energy storage units," Applied Energy, Elsevier, vol. 308(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:342:y:2023:i:c:s0306261923005123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.