IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v208y2017icp195-209.html
   My bibliography  Save this article

Optimal network design of hydrogen production by integrated utility and biogas supply networks

Author

Listed:
  • Hwangbo, Soonho
  • Lee, Seungchul
  • Yoo, Changkyoo

Abstract

This research aims to develop a mathematical model to construct a network model for producing hydrogen by integrated utility and biogas supply networks (IUBSNs). In this model, a utility supply network exists in a huge petrochemical industry while a biogas supply network consists of a wastewater treatment plant and anaerobic digestion. Pipelines connect the utility and biogas supply networks. The steam reforming process, which is the most well-known process able to generate large amounts of hydrogen, is employed to harness hydrogen as well as to integrate the two networks. In IUBSNs, the needed steam is obtained by optimizing a utility supply network while methane-rich biogas is generated by placing anaerobic digestion tanks into a number of wastewater treatment plants allocated by region. This study uses an algorithm for solving the mixed-integer linear programming problems to minimize the total annual costs of IUBSNs and simultaneously satisfy hydrogen demand. IUBSNs can be a great alternative to a hydrogen supply network that imports and consumes fossil fuels to produce hydrogen, furthermore, it is able to positively influence environmental issues through the reduction of the amount of fossil fuel used in petrochemical industries. A case study of the Republic of Korea illustrates the feasibility of the proposed model. Three cases (base case, only optimized utility supply networks, and IUBSNs) are conducted, and an increase in hydrogen demand is applied to each case. The results demonstrate that IUBSNs construction decreases the total costs by about 13% compared to the existing situation, and as hydrogen demand increases, the gas pipeline structure in IUBSNs employs a hub city to transport biogas flexibly.

Suggested Citation

  • Hwangbo, Soonho & Lee, Seungchul & Yoo, Changkyoo, 2017. "Optimal network design of hydrogen production by integrated utility and biogas supply networks," Applied Energy, Elsevier, vol. 208(C), pages 195-209.
  • Handle: RePEc:eee:appene:v:208:y:2017:i:c:p:195-209
    DOI: 10.1016/j.apenergy.2017.10.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917314666
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.10.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:208:y:2017:i:c:p:195-209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.