IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v208y2017icp1487-1504.html
   My bibliography  Save this article

An innovative multi-objective optimization approach for long-term energy planning

Author

Listed:
  • Mahbub, Md Shahriar
  • Viesi, Diego
  • Cattani, Sara
  • Crema, Luigi

Abstract

Designing future energy scenarios is an important topic to energy planners. As designing future optimized scenarios is a multi-objective optimization problem; therefore, it is required to identify trade-off scenarios (Pareto-front) in order to optimize conflicting objectives. In this study, three Pareto-fronts are identified for designing future scenarios for Val di Non (VdN) for three different time horizons. As the community has to reach different emission targets in different time horizons, it is require to select the optimized scenarios that fulfill the targets. In this regards, we propose a new approach for selecting scenarios based on maximizing decision space diversity in order to provide a diverse set of scenarios to the decision makers. The technique is tested on optimized scenarios of VdN and three sets containing 10 diverse scenarios for different time horizons are selected. Moreover, a smooth transition (in terms of decision variables) is desirable when having a transition from a scenario from one time horizon to a consecutive time horizon. A novel method is proposed to choose scenarios from the sets for a smooth transition based on minimizing distances among the scenarios. The approach is applied on VdN where transient scenarios are identified among different possible optimized scenarios.

Suggested Citation

  • Mahbub, Md Shahriar & Viesi, Diego & Cattani, Sara & Crema, Luigi, 2017. "An innovative multi-objective optimization approach for long-term energy planning," Applied Energy, Elsevier, vol. 208(C), pages 1487-1504.
  • Handle: RePEc:eee:appene:v:208:y:2017:i:c:p:1487-1504
    DOI: 10.1016/j.apenergy.2017.08.245
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917312278
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.08.245?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:208:y:2017:i:c:p:1487-1504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.