IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v407y2021ics0096300321004173.html
   My bibliography  Save this article

The minmax regret inverse maximum weight problem

Author

Listed:
  • Nguyen, Kien Trung
  • Hung, Nguyen Thanh

Abstract

Let a ground set E and a prespecified element be given. We address the problem of modifying the weight of each element in E at minimum cost so that the weight of the prespecified element become the maximum one in the perturbed set. Moreover, as modifying costs are usually uncertain in many real life situations, we measure the robustness by taking into account the minmax regret inverse maximum weight problem on E. In order to solve the problem, we first prove that there are exactly two scenarios that lead to the maximum regret of the cost function. Based on the convexity of the objective function, we develop a combinatorial algorithm that solves the corresponding problem in linear time.

Suggested Citation

  • Nguyen, Kien Trung & Hung, Nguyen Thanh, 2021. "The minmax regret inverse maximum weight problem," Applied Mathematics and Computation, Elsevier, vol. 407(C).
  • Handle: RePEc:eee:apmaco:v:407:y:2021:i:c:s0096300321004173
    DOI: 10.1016/j.amc.2021.126328
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321004173
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126328?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Smith, J. Cole & Song, Yongjia, 2020. "A survey of network interdiction models and algorithms," European Journal of Operational Research, Elsevier, vol. 283(3), pages 797-811.
    2. Ravindra K. Ahuja & James B. Orlin, 2001. "Inverse Optimization," Operations Research, INFORMS, vol. 49(5), pages 771-783, October.
    3. Xiaoguang Yang & Jianzhong Zhang, 2007. "Some inverse min-max network problems under weighted l 1 and l ∞ norms with bound constraints on changes," Journal of Combinatorial Optimization, Springer, vol. 13(2), pages 123-135, February.
    4. Cai Mao-Cheng & Yanjun Li, 1997. "Inverse Matroid Intersection Problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 45(2), pages 235-243, June.
    5. Nguyen, Kien Trung & Chassein, André, 2015. "The inverse convex ordered 1-median problem on trees under Chebyshev norm and Hamming distance," European Journal of Operational Research, Elsevier, vol. 247(3), pages 774-781.
    6. Chassein, André & Goerigk, Marc, 2018. "Variable-sized uncertainty and inverse problems in robust optimization," European Journal of Operational Research, Elsevier, vol. 264(1), pages 17-28.
    7. Cai, Mao-Cheng & Duin, C.W. & Yang, Xiaoguang & Zhang, Jianzhong, 2008. "The partial inverse minimum spanning tree problem when weight increase is forbidden," European Journal of Operational Research, Elsevier, vol. 188(2), pages 348-353, July.
    8. Gassner, Elisabeth, 2009. "Up- and downgrading the 1-center in a network," European Journal of Operational Research, Elsevier, vol. 198(2), pages 370-377, October.
    9. Ravindra K. Ahuja & James B. Orlin, 2001. "A Fast Scaling Algorithm for Minimizing Separable Convex Functions Subject to Chain Constraints," Operations Research, INFORMS, vol. 49(5), pages 784-789, October.
    10. Kien Trung Nguyen, 2016. "Inverse 1-Median Problem on Block Graphs with Variable Vertex Weights," Journal of Optimization Theory and Applications, Springer, vol. 168(3), pages 944-957, March.
    11. Zhao Zhang & Shuangshuang Li & Hong-Jian Lai & Ding-Zhu Du, 2016. "Algorithms for the partial inverse matroid problem in which weights can only be increased," Journal of Global Optimization, Springer, vol. 65(4), pages 801-811, August.
    12. Behrooz Alizadeh & Rainer Burkard, 2013. "A linear time algorithm for inverse obnoxious center location problems on networks," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(3), pages 585-594, September.
    13. Alizadeh, Behrooz & Afrashteh, Esmaeil, 2020. "Budget-constrained inverse median facility location problem on tree networks," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    14. Dorit S. Hochbaum, 2003. "Efficient Algorithms for the Inverse Spanning-Tree Problem," Operations Research, INFORMS, vol. 51(5), pages 785-797, October.
    15. Kien Trung Nguyen & Huong Nguyen-Thu & Nguyen Thanh Hung, 2018. "On the complexity of inverse convex ordered 1-median problem on the plane and on tree networks," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 88(2), pages 147-159, October.
    16. Clemens Heuberger, 2004. "Inverse Combinatorial Optimization: A Survey on Problems, Methods, and Results," Journal of Combinatorial Optimization, Springer, vol. 8(3), pages 329-361, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kien Trung Nguyen & Nguyen Thanh Hung, 2020. "The inverse connected p-median problem on block graphs under various cost functions," Annals of Operations Research, Springer, vol. 292(1), pages 97-112, September.
    2. Xianyue Li & Xichao Shu & Huijing Huang & Jingjing Bai, 2019. "Capacitated partial inverse maximum spanning tree under the weighted Hamming distance," Journal of Combinatorial Optimization, Springer, vol. 38(4), pages 1005-1018, November.
    3. Javad Tayyebi & Ali Reza Sepasian, 2020. "Partial inverse min–max spanning tree problem," Journal of Combinatorial Optimization, Springer, vol. 40(4), pages 1075-1091, November.
    4. Behrooz Alizadeh & Somayeh Bakhteh, 2017. "A modified firefly algorithm for general inverse p-median location problems under different distance norms," OPSEARCH, Springer;Operational Research Society of India, vol. 54(3), pages 618-636, September.
    5. Timothy C. Y. Chan & Tim Craig & Taewoo Lee & Michael B. Sharpe, 2014. "Generalized Inverse Multiobjective Optimization with Application to Cancer Therapy," Operations Research, INFORMS, vol. 62(3), pages 680-695, June.
    6. Chassein, André & Goerigk, Marc, 2018. "Variable-sized uncertainty and inverse problems in robust optimization," European Journal of Operational Research, Elsevier, vol. 264(1), pages 17-28.
    7. Xianyue Li & Zhao Zhang & Ding-Zhu Du, 2018. "Partial inverse maximum spanning tree in which weight can only be decreased under $$l_p$$ l p -norm," Journal of Global Optimization, Springer, vol. 70(3), pages 677-685, March.
    8. Hughes, Michael S. & Lunday, Brian J., 2022. "The Weapon Target Assignment Problem: Rational Inference of Adversary Target Utility Valuations from Observed Solutions," Omega, Elsevier, vol. 107(C).
    9. Jonathan Yu-Meng Li, 2021. "Inverse Optimization of Convex Risk Functions," Management Science, INFORMS, vol. 67(11), pages 7113-7141, November.
    10. Xianyue Li & Ruowang Yang & Heping Zhang & Zhao Zhang, 2022. "Partial inverse maximum spanning tree problem under the Chebyshev norm," Journal of Combinatorial Optimization, Springer, vol. 44(5), pages 3331-3350, December.
    11. Kien Trung Nguyen, 2019. "The inverse 1-center problem on cycles with variable edge lengths," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(1), pages 263-274, March.
    12. Alizadeh, Behrooz & Afrashteh, Esmaeil, 2020. "Budget-constrained inverse median facility location problem on tree networks," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    13. Xianyue Li & Zhao Zhang & Ruowang Yang & Heping Zhang & Ding-Zhu Du, 2020. "Approximation algorithms for capacitated partial inverse maximum spanning tree problem," Journal of Global Optimization, Springer, vol. 77(2), pages 319-340, June.
    14. Hui Wang & Xiucui Guan & Qiao Zhang & Binwu Zhang, 2021. "Capacitated inverse optimal value problem on minimum spanning tree under bottleneck Hamming distance," Journal of Combinatorial Optimization, Springer, vol. 41(4), pages 861-887, May.
    15. Junhua Jia & Xiucui Guan & Qiao Zhang & Xinqiang Qian & Panos M. Pardalos, 2022. "Inverse max+sum spanning tree problem under weighted $$l_{\infty }$$ l ∞ norm by modifying max-weight vector," Journal of Global Optimization, Springer, vol. 84(3), pages 715-738, November.
    16. Abumoslem Mohammadi & Javad Tayyebi, 2019. "Maximum Capacity Path Interdiction Problem with Fixed Costs," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(04), pages 1-21, August.
    17. Zeynep Erkin & Matthew D. Bailey & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2010. "Eliciting Patients' Revealed Preferences: An Inverse Markov Decision Process Approach," Decision Analysis, INFORMS, vol. 7(4), pages 358-365, December.
    18. Vincent Mousseau & Özgür Özpeynirci & Selin Özpeynirci, 2018. "Inverse multiple criteria sorting problem," Annals of Operations Research, Springer, vol. 267(1), pages 379-412, August.
    19. T. R. Wang & N. Pedroni & E. Zio & V. Mousseau, 2020. "Identification of Protective Actions to Reduce the Vulnerability of Safety‐Critical Systems to Malevolent Intentional Acts: An Optimization‐Based Decision‐Making Approach," Risk Analysis, John Wiley & Sons, vol. 40(3), pages 565-587, March.
    20. Xiucui Guan & Xinyan He & Panos M. Pardalos & Binwu Zhang, 2017. "Inverse max $$+$$ + sum spanning tree problem under Hamming distance by modifying the sum-cost vector," Journal of Global Optimization, Springer, vol. 69(4), pages 911-925, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:407:y:2021:i:c:s0096300321004173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.