IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v320y2018icp621-632.html
   My bibliography  Save this article

Effect of the migration mechanism based on risk preference on the evolution of cooperation

Author

Listed:
  • Li, Yan
  • Ye, Hang

Abstract

Individual migration is an effective means of promoting cooperation in the spatial structure. We can think of migration as a kind of risky investment, so risk attitudes can produce an effect on the migration decision. In order to understand the relationship between risk preference and the evolution of cooperation, the spatial prisoner’s dilemma game model with individual migration based on risk preference is established. By introducing the homogeneity of risk preference, we find that lower risk aversion values keep a high level of cooperation under a larger defection parameter, while the cooperation level can be raised when the whole population is risk-seeking and at lower risk aversion values under a smaller defection parameter. Under the heterogeneous risk preference assumption, simulation results indicate that the cooperation strategy is a winning strategy in a steady state for a wide parameter space and the cooperation level decreases with increasing in the variance of risk preference. From typical snapshots, we can see that co-evolution of the network structure and cooperation strategy has been realized. Cooperative clusters can also be found in the typical snapshots, which have proved the migration mechanism based on risk to be effective in favoring the evolution of cooperation.

Suggested Citation

  • Li, Yan & Ye, Hang, 2018. "Effect of the migration mechanism based on risk preference on the evolution of cooperation," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 621-632.
  • Handle: RePEc:eee:apmaco:v:320:y:2018:i:c:p:621-632
    DOI: 10.1016/j.amc.2017.10.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317307221
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.10.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andreas Flache, 2001. "Individual Risk Preferences And Collective Outcomes In The Evolution Of Exchange Networks," Rationality and Society, , vol. 13(3), pages 304-348, August.
    2. Jorgen W. Weibull, 1997. "Evolutionary Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262731215, December.
    3. Catia Batista & Janis Umblijs, 2014. "Migration, risk attitudes, and entrepreneurship: evidence from a representative immigrant survey," IZA Journal of Migration and Development, Springer;Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 3(1), pages 1-25, December.
    4. Christoph Hauert & Michael Doebeli, 2004. "Spatial structure often inhibits the evolution of cooperation in the snowdrift game," Nature, Nature, vol. 428(6983), pages 643-646, April.
    5. Chen, Zhuo & Gao, Jianxi & Cai, Yunze & Xu, Xiaoming, 2011. "Evolution of cooperation among mobile agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(9), pages 1615-1622.
    6. Lane, David A, 1993. "Artificial Worlds and Economics, Part I," Journal of Evolutionary Economics, Springer, vol. 3(2), pages 89-107, May.
    7. Andrew M. Colman, 2006. "The puzzle of cooperation," Nature, Nature, vol. 440(7085), pages 744-745, April.
    8. Chen, Mei-huan & Wang, Li & Wang, Juan & Sun, Shi-wen & Xia, Cheng-yi, 2015. "Impact of individual response strategy on the spatial public goods game within mobile agents," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 192-202.
    9. Tesfatsion, Leigh, 2001. "Introduction to the special issue on agent-based computational economics," Journal of Economic Dynamics and Control, Elsevier, vol. 25(3-4), pages 281-293, March.
    10. Te Wu & Feng Fu & Yanling Zhang & Long Wang, 2013. "The Increased Risk of Joint Venture Promotes Social Cooperation," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-10, June.
    11. Smaldino, Paul E. & Schank, Jeffrey C., 2012. "Movement patterns, social dynamics, and the evolution of cooperation," Theoretical Population Biology, Elsevier, vol. 82(1), pages 48-58.
    12. David A. Jaeger & Thomas Dohmen & Armin Falk & David Huffman & Uwe Sunde & Holger Bonin, 2010. "Direct Evidence on Risk Attitudes and Migration," The Review of Economics and Statistics, MIT Press, vol. 92(3), pages 684-689, August.
    13. Hisashi Ohtsuki & Christoph Hauert & Erez Lieberman & Martin A. Nowak, 2006. "A simple rule for the evolution of cooperation on graphs and social networks," Nature, Nature, vol. 441(7092), pages 502-505, May.
    14. Jason Barr & Troy Tassier, 2010. "Endogenous Neighborhood Selection and the Attainment of Cooperation in a Spatial Prisoner’s Dilemma Game," Computational Economics, Springer;Society for Computational Economics, vol. 35(3), pages 211-234, March.
    15. repec:hhs:iuiwop:487 is not listed on IDEAS
    16. Lane, David A, 1993. "Artificial Worlds and Economics, Part II," Journal of Evolutionary Economics, Springer, vol. 3(3), pages 177-197, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang Chi, 2022. "How Does Migration Working Experience Change Farmers’ Social Capital in Rural China?," IJERPH, MDPI, vol. 19(20), pages 1-17, October.
    2. Ma, Yin-Jie & Jiang, Zhi-Qiang & Podobnik, Boris, 2022. "Predictability of players’ actions as a mechanism to boost cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    3. Wenjian Li & Yang Zhang & Yuanyuan Wu & Xue Han & Benhai Guo & Gang Xie, 2021. "Enterprise Reciprocity and Risk Preferences and the Sustainable Cooperation of Innovation Activities in Industrial Parks," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    4. Dhakal, Sandeep & Chiong, Raymond & Chica, Manuel & Middleton, Richard H., 2020. "Climate change induced migration and the evolution of cooperation," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    5. Yang, Yixin & Pan, Qiuhui & He, Mingfeng, 2023. "The influence of environment-based autonomous mobility on the evolution of cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    6. Wang, Ding & Guo, Peng & Kilgour, D. Marc & Ponnambalam, Kumaraswamy & Hipel, Keith W., 2022. "The evolution of R&D collaboration in inter-organizational project networks: Effects of reference points for competitive preference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yan & Ye, Hang, 2015. "Effect of migration based on strategy and cost on the evolution of cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 76(C), pages 156-165.
    2. Garavaglia, Christian, 2010. "Modelling industrial dynamics with "History-friendly" simulations," Structural Change and Economic Dynamics, Elsevier, vol. 21(4), pages 258-275, November.
    3. Tim Johnson & Oleg Smirnov, 2020. "Temporal assortment of cooperators in the spatial prisoner's dilemma," Papers 2011.14440, arXiv.org.
    4. Michael Foley & Rory Smead & Patrick Forber & Christoph Riedl, 2021. "Avoiding the bullies: The resilience of cooperation among unequals," PLOS Computational Biology, Public Library of Science, vol. 17(4), pages 1-18, April.
    5. Lv, Shaojie & Zhao, Changheng & Li, Jiaying, 2022. "Generosity in public goods game with the aspiration-driven rule," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    6. Huang, Keke & Zheng, Xiaoping & Su, Yunpeng, 2015. "Effect of heterogeneous sub-populations on the evolution of cooperation," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 681-687.
    7. Salehi, Mostafa & Rabiee, Hamid R. & Jalili, Mahdi, 2010. "Motif structure and cooperation in real-world complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(23), pages 5521-5529.
    8. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    9. Ping Zhu & Guiyi Wei, 2014. "Stochastic Heterogeneous Interaction Promotes Cooperation in Spatial Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-10, April.
    10. Fernando Lozano & Jaime Lozano & Mario García, 2007. "An artificial economy based on reinforcement learning and agent based modeling," Documentos de Trabajo 3907, Universidad del Rosario.
    11. Lv, Shaojie & Wang, Xianjia, 2020. "The impact of heterogeneous investments on the evolution of cooperation in public goods game with exclusion," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    12. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    13. Zhao, Zhengwu & Zhang, Chunyan, 2023. "The mechanisms of labor division from the perspective of task urgency and game theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    14. Alexander Gorobets & Bart Nooteboom, 2006. "Adaptive Build-up and Breakdown of Trust: An Agent Based Computational Approach," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 10(3), pages 277-306, September.
    15. Per L. Bylund, 2015. "Signifying Williamson's Contribution to the Transaction Cost Approach: An Agent-Based Simulation of Coasean Transaction Costs and Specialization," Journal of Management Studies, Wiley Blackwell, vol. 52(1), pages 148-174, January.
    16. Flaminio Squazzoni, 2010. "The impact of agent-based models in the social sciences after 15 years of incursions," History of Economic Ideas, Fabrizio Serra Editore, Pisa - Roma, vol. 18(2), pages 197-234.
    17. Hossein Sabzian & Mohammad Ali Shafia & Ali Maleki & Seyeed Mostapha Seyeed Hashemi & Ali Baghaei & Hossein Gharib, 2019. "Theories and Practice of Agent based Modeling: Some practical Implications for Economic Planners," Papers 1901.08932, arXiv.org.
    18. Rong-Hua Li & Jeffrey Xu Yu & Jiyuan Lin, 2013. "Evolution of Cooperation in Spatial Traveler's Dilemma Game," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-11, March.
    19. Giorgio Fagiolo & Andrea Roventini, 2017. "Macroeconomic Policy in DSGE and Agent-Based Models Redux: New Developments and Challenges Ahead," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 20(1), pages 1-1.
    20. Han, Jia-Xu & Wang, Rui-Wu, 2023. "Complex interactions promote the frequency of cooperation in snowdrift game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:320:y:2018:i:c:p:621-632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.