IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v97y2010i2p240-246.html
   My bibliography  Save this article

Assessment of a groundwater quality monitoring network using vulnerability mapping and geostatistics: A case study from Heretaunga Plains, New Zealand

Author

Listed:
  • Baalousha, Husam

Abstract

A groundwater monitoring network can provide quantity and quality data necessary to make informed decisions regarding the state of the environment. A properly designed monitoring system provides a representative understanding of the state of the monitored area. The selection of the optimum number of monitoring sites and their spatial distribution is a major challenge for the hydrogeologist. On the one hand, improper distribution of monitoring sites or insufficient number of sites will not provide a representative view of the state of the environment. On the other hand, if the sampled sites are too many, the information obtained is redundant and the monitoring network is costly and inefficient. A new methodology combining vulnerability mapping and geostatistics is proposed to help define the most efficient groundwater quality monitoring network on a regional scale. Vulnerability mapping identifies areas with high pollution potential, and in turn, prioritises for monitoring. A geostatistics methodology is then used to interpret the obtained data and to examine the spatial distribution of monitored parameters at different sites. The accuracy of spatial mapping reflects the effectiveness of the distribution of the monitoring sites. The methodology was applied to assess the nitrate monitoring network in the Heretaunga basin, Hawke's Bay, New Zealand. The DRASTIC approach was used to prepare a vulnerability map for the area of study, and kriging variance was used to check the spatial distribution of the sites. Based on this study, it was found that some areas with high vulnerability are not covered within the existing network indicating the number of monitoring sites and their distribution is not efficient. Some sites should be dropped and some others need to be added to the existing network.

Suggested Citation

  • Baalousha, Husam, 2010. "Assessment of a groundwater quality monitoring network using vulnerability mapping and geostatistics: A case study from Heretaunga Plains, New Zealand," Agricultural Water Management, Elsevier, vol. 97(2), pages 240-246, February.
  • Handle: RePEc:eee:agiwat:v:97:y:2010:i:2:p:240-246
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(09)00282-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H. Assaf & M. Saadeh, 2009. "Geostatistical Assessment of Groundwater Nitrate Contamination with Reflection on DRASTIC Vulnerability Assessment: The Case of the Upper Litani Basin, Lebanon," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(4), pages 775-796, March.
    2. Daniela Ducci, 1999. "GIS Techniques for Mapping Groundwater Contamination Risk," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 20(2), pages 279-294, November.
    3. Sreenivasulu Chadalavada & Bithin Datta, 2008. "Dynamic Optimal Monitoring Network Design for Transient Transport of Pollutants in Groundwater Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(6), pages 651-670, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shih -Ching Wu & Kai-Yuan Ke & Hsien-Tsung Lin & Yih-Chi Tan, 2017. "Optimization of Groundwater Quality Monitoring Network Using Risk Assessment and Geostatistic Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 515-530, January.
    2. Juan Esquivel & Guillermo Morales & María Esteller, 2015. "Groundwater Monitoring Network Design Using GIS and Multicriteria Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3175-3194, July.
    3. Ruiliang Jia & Jinlong Zhou & Yinzhu Zhou & Qiao Li & Yexin Gao, 2014. "A Vulnerability Evaluation of the Phreatic Water in the Plain Area of the Junggar Basin, Xinjiang Based on the VDEAL Model," Sustainability, MDPI, vol. 6(12), pages 1-14, November.
    4. Yassine El Yousfi & Mahjoub Himi & Mourad Aqnouy & Said Benyoussef & Hicham Gueddari & Imane Lamine & Hossain El Ouarghi & Amar Alali & Hanane Ait Hmeid & Mohamed Chahban & Abdennabi Alitane & Abdalla, 2023. "Pollution Vulnerability of the Ghiss Nekkor Alluvial Aquifer in Al-Hoceima (Morocco), Using GIS-Based DRASTIC Model," IJERPH, MDPI, vol. 20(6), pages 1-17, March.
    5. Aminreza Neshat & Biswajeet Pradhan, 2015. "An integrated DRASTIC model using frequency ratio and two new hybrid methods for groundwater vulnerability assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 543-563, March.
    6. Hedi Mahmoudpour & Somaye Janatrostami & Afshin Ashrafzadeh, 2023. "Optimal Design of Groundwater Quality Monitoring Network Using Aquifer Vulnerability Map," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 797-818, January.
    7. Alvin Lal & Bithin Datta, 2019. "Application of Monitoring Network Design and Feedback Information for Adaptive Management of Coastal Groundwater Resources," IJERPH, MDPI, vol. 16(22), pages 1-26, November.
    8. Aminreza Neshat & Biswajeet Pradhan, 2015. "Risk assessment of groundwater pollution with a new methodological framework: application of Dempster–Shafer theory and GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1565-1585, September.
    9. Giovanni De Filippis & Prisco Piscitelli & Idelberto Francesco Castorini & Anna Maria Raho & Adele Idolo & Nicola Ungaro & Filomena Lacarbonara & Erminia Sgaramella & Vito Laghezza & Donatella Chionna, 2020. "Water Quality Assessment: A Quali-Quantitative Method for Evaluation of Environmental Pressures Potentially Impacting on Groundwater, Developed under the M.I.N.O.Re. Project," IJERPH, MDPI, vol. 17(6), pages 1-14, March.
    10. Tahoora Sheikhy Narany & Mohammad Ramli & Kazem Fakharian & Ahmad Aris & Wan Sulaiman, 2015. "Multi-Objective Based Approach for Groundwater Quality Monitoring Network Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5141-5156, November.
    11. Dickson Abdul-Wahab & Dickson Adomako & Gibrilla Abass & Dennis K. Adotey & Geophrey Anornu & Samuel Ganyaglo, 2021. "Hydrogeochemical and isotopic assessment for characterizing groundwater quality and recharge processes in the Lower Anayari catchment of the Upper East Region, Ghana," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5297-5315, April.
    12. P. Mohana & P. M. Velmurugan, 2021. "Evaluation and characterization of groundwater using chemometric and spatial analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 309-330, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hedi Mahmoudpour & Somaye Janatrostami & Afshin Ashrafzadeh, 2023. "Optimal Design of Groundwater Quality Monitoring Network Using Aquifer Vulnerability Map," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 797-818, January.
    2. Bithin Datta & Dibakar Chakrabarty & Anirban Dhar, 2009. "Optimal Dynamic Monitoring Network Design and Identification of Unknown Groundwater Pollution Sources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(10), pages 2031-2049, August.
    3. Ching-Ping Liang & Cheng-Shin Jang & Cheng-Wei Liang & Jui-Sheng Chen, 2016. "Groundwater Vulnerability Assessment of the Pingtung Plain in Southern Taiwan," IJERPH, MDPI, vol. 13(11), pages 1-19, November.
    4. Mohammad Kamali & Rouzbeh Nazari & Alireza Faridhosseini & Hossein Ansari & Saeid Eslamian, 2015. "The Determination of Reference Evapotranspiration for Spatial Distribution Mapping Using Geostatistics," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 3929-3940, September.
    5. Manish Jha & Bithin Datta, 2014. "Linked Simulation-Optimization based Dedicated Monitoring Network Design for Unknown Pollutant Source Identification using Dynamic Time Warping Distance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4161-4182, September.
    6. C. Singaraja & S. Chidambaram & P. Anandhan & M. Prasanna & C. Thivya & R. Thilagavathi, 2015. "A study on the status of saltwater intrusion in the coastal hard rock aquifer of South India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(3), pages 443-475, June.
    7. Sérgio Mateus Chilaule & Mercedes Vélez-Nicolás & Verónica Ruiz-Ortiz & Ángel Sánchez-Bellón & Santiago García-López, 2023. "Assessment of Intrinsic Vulnerability Using DRASTIC vs. Actual Nitrate Pollution: The Case of a Detrital Aquifer Impacted by Intensive Agriculture in Cádiz (Southern Spain)," Agriculture, MDPI, vol. 13(5), pages 1-19, May.
    8. L. Raso & S. V. Weijs & M. Werner, 2018. "Balancing Costs and Benefits in Selecting New Information: Efficient Monitoring Using Deterministic Hydro-economic Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 339-357, January.
    9. Aminreza Neshat & Biswajeet Pradhan, 2015. "Risk assessment of groundwater pollution with a new methodological framework: application of Dempster–Shafer theory and GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1565-1585, September.
    10. Francisco Picado & Alfredo Mendoza & Steven Cuadra & Gerhard Barmen & Kristina Jakobsson & Göran Bengtsson, 2010. "Ecological, Groundwater, and Human Health Risk Assessment in a Mining Region of Nicaragua," Risk Analysis, John Wiley & Sons, vol. 30(6), pages 916-933, June.
    11. Lazhar Belkhiri & Tahoora Narany, 2015. "Using Multivariate Statistical Analysis, Geostatistical Techniques and Structural Equation Modeling to Identify Spatial Variability of Groundwater Quality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 2073-2089, April.
    12. Mehrdad Jeihouni & Ara Toomanian & Ali Mansourian, 2020. "Decision Tree-Based Data Mining and Rule Induction for Identifying High Quality Groundwater Zones to Water Supply Management: a Novel Hybrid Use of Data Mining and GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 139-154, January.
    13. Maria Triassi & Pellegrino Cerino & Paolo Montuori & Antonio Pizzolante & Ugo Trama & Federico Nicodemo & Jacopo Luigi D’Auria & Sabato De Vita & Elvira De Rosa & Antonio Limone, 2023. "Heavy Metals in Groundwater of Southern Italy: Occurrence and Potential Adverse Effects on the Environment and Human Health," IJERPH, MDPI, vol. 20(3), pages 1-17, January.
    14. Yassine El Yousfi & Mahjoub Himi & Mourad Aqnouy & Said Benyoussef & Hicham Gueddari & Imane Lamine & Hossain El Ouarghi & Amar Alali & Hanane Ait Hmeid & Mohamed Chahban & Abdennabi Alitane & Abdalla, 2023. "Pollution Vulnerability of the Ghiss Nekkor Alluvial Aquifer in Al-Hoceima (Morocco), Using GIS-Based DRASTIC Model," IJERPH, MDPI, vol. 20(6), pages 1-17, March.
    15. Lior Netzer & Noam Weisbrod & Daniel Kurtzman & Ahmed Nasser & Ellen Graber & Daniel Ronen, 2011. "Observations on Vertical Variability in Groundwater Quality: Implications for Aquifer Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1315-1324, March.
    16. Bithin Datta & Om Prakash & Sean Campbell & Gerry Escalada, 2013. "Efficient Identification of Unknown Groundwater Pollution Sources Using Linked Simulation-Optimization Incorporating Monitoring Location Impact Factor and Frequency Factor," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(14), pages 4959-4976, November.
    17. Sina Sadeghfam & Yousef Hassanzadeh & Ata Allah Nadiri & Mahdi Zarghami, 2016. "Localization of Groundwater Vulnerability Assessment Using Catastrophe Theory," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4585-4601, October.
    18. Adam Khalifa Mohamed & Dan Liu & Kai Song & Mohamed A. A. Mohamed & Elsiddig Aldaw & Basheer A. Elubid, 2019. "Hydrochemical Analysis and Fuzzy Logic Method for Evaluation of Groundwater Quality in the North Chengdu Plain, China," IJERPH, MDPI, vol. 16(3), pages 1-21, January.
    19. Robert Nelson & Joonghyeok Heo, 2020. "Monitoring Environmental Parameters with Oil and Gas Developments in the Permian Basin, USA," IJERPH, MDPI, vol. 17(11), pages 1-18, June.
    20. Tahoora Sheikhy Narany & Mohammad Ramli & Kazem Fakharian & Ahmad Aris & Wan Sulaiman, 2015. "Multi-Objective Based Approach for Groundwater Quality Monitoring Network Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5141-5156, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:97:y:2010:i:2:p:240-246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.