IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v97y2010i11p1822-1828.html
   My bibliography  Save this article

New approach for olive trees irrigation scheduling using trunk diameter sensors

Author

Listed:
  • Moriana, A.
  • Girón, I.F.
  • Martín-Palomo, M.J.
  • Conejero, W.
  • Ortuño, M.F.
  • Torrecillas, A.
  • Moreno, F.

Abstract

Trunk diameter fluctuations (TDFs) have been suggested as an irrigation-scheduling tool for several fruit trees, but the works in olive trees has not obtained successful results with any of the indicators (maximum daily shrinkage (MDS) and trunk growth rate (TGR)) that are calculated from the daily TDF curves. No studies of olive trees have ever used reference trees to reduce the influence of the environment, as in work for other fruit trees. In this work, we compare different continuous and discrete water status measurements in a drought cycle. We suggest the calculation of a new and related indicator (DTGR), the difference between the TGR of stressed trees, and the TGR of reference trees. Negative DTGR values always indicate water stress conditions. The current work describes the variations of this new indicator (DTGR) in relation to water stress, and compares DTRG to the midday stem water potential, maximum leaf conductance and to the MDS. The midday stem water potential and the maximum leaf conductance describe the stress cycle clearer than the trunk diameter fluctuation indicators. No significant differences were found in the values of MDS between stressed and reference trees. On the other hand, the DTGR pattern values were near that of the stem water potential, though positive values were recorded in some dates during the water stress cycle. These variations indicate that DTGR is not a cumulative water stress indicators, as is water potential. Therefore, according to our data, water potential is a better indicator than the TDF parameters when no deficit irrigation scheduling is performed in olive trees. DTGR seems to be a good indicator of water stress from a threshold value around -1.4Â MPa in olive trees. In addition, higher variability of DTGR than stem water potential may also be reduced with the increase in the number of sensors.

Suggested Citation

  • Moriana, A. & Girón, I.F. & Martín-Palomo, M.J. & Conejero, W. & Ortuño, M.F. & Torrecillas, A. & Moreno, F., 2010. "New approach for olive trees irrigation scheduling using trunk diameter sensors," Agricultural Water Management, Elsevier, vol. 97(11), pages 1822-1828, November.
  • Handle: RePEc:eee:agiwat:v:97:y:2010:i:11:p:1822-1828
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(10)00227-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Perez-Lopez, D. & Ribas, F. & Moriana, A. & Olmedilla, N. & de Juan, A., 2007. "The effect of irrigation schedules on the water relations and growth of a young olive (Olea europaea L.) orchard," Agricultural Water Management, Elsevier, vol. 89(3), pages 297-304, May.
    2. Pérez-López, D. & Gijón, M.C. & Moriana, A., 2008. "Influence of irrigation rate on the rehydration of olive tree plantlets," Agricultural Water Management, Elsevier, vol. 95(10), pages 1161-1166, October.
    3. Ortuño, M.F. & García-Orellana, Y. & Conejero, W. & Pérez-Sarmiento, F. & Torrecillas, A., 2009. "Assessment of maximum daily trunk shrinkage signal intensity threshold values for deficit irrigation in lemon trees," Agricultural Water Management, Elsevier, vol. 96(1), pages 80-86, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Dazhi & Hendricks Franssen, Harrie-Jan & Han, Xujun & Jiménez-Bello, Miguel Angel & Martínez Alzamora, Fernando & Vereecken, Harry, 2018. "Evaluation of an operational real-time irrigation scheduling scheme for drip irrigated citrus fields in Picassent, Spain," Agricultural Water Management, Elsevier, vol. 208(C), pages 465-477.
    2. Fernández, J.E., 2014. "Plant-based sensing to monitor water stress: Applicability to commercial orchards," Agricultural Water Management, Elsevier, vol. 142(C), pages 99-109.
    3. De la Rosa, J.M. & Domingo, R. & Gómez-Montiel, J. & Pérez-Pastor, A., 2015. "Implementing deficit irrigation scheduling through plant water stress indicators in early nectarine trees," Agricultural Water Management, Elsevier, vol. 152(C), pages 207-216.
    4. Cajias, Evelyn & Antunez, Alejandro & Román, L.F., 2016. "Response to moderate water stress imposed after pit hardening in mature table olive orchard cv. Azapa," Agricultural Water Management, Elsevier, vol. 173(C), pages 76-83.
    5. Corell, M. & Girón, I.F. & Moriana, A. & Dell’Amico, J. & Morales, D. & Moreno, F., 2013. "Extrapolating base-line trunk shrinkage reference equations across olive orchards," Agricultural Water Management, Elsevier, vol. 126(C), pages 1-8.
    6. Silber, A. & Naor, A. & Israeli, Y. & Assouline, S., 2013. "Combined effect of irrigation regime and fruit load on the patterns of trunk-diameter variation of ‘Hass’ avocado at different phenological periods," Agricultural Water Management, Elsevier, vol. 129(C), pages 87-94.
    7. Corell, M. & Martín-Palomo, M.J. & Girón, I. & Andreu, L. & Trigo, E. & López-Moreno, Y.E. & Torrecillas, A. & Centeno, A. & Pérez-López, D. & Moriana, A., 2019. "Approach using trunk growth rate data to identify water stress conditions in olive trees," Agricultural Water Management, Elsevier, vol. 222(C), pages 12-20.
    8. Martín-Palomo, MJ & Andreu, L. & Pérez-López, D. & Centeno, A. & Galindo, A. & Moriana, A. & Corell, M., 2022. "Trunk growth rate frequencies as water stress indicator in almond trees," Agricultural Water Management, Elsevier, vol. 271(C).
    9. García-Tejero, I.F. & Hernández, A. & Padilla-Díaz, C.M. & Diaz-Espejo, A. & Fernández, J.E, 2017. "Assessing plant water status in a hedgerow olive orchard from thermography at plant level," Agricultural Water Management, Elsevier, vol. 188(C), pages 50-60.
    10. Martín-Palomo, M.J. & Corell, M. & Andreu, L. & López-Moreno, Y.E. & Galindo, A. & Moriana, A., 2021. "Identification of water stress conditions in olive trees through frequencies of trunk growth rate," Agricultural Water Management, Elsevier, vol. 247(C).
    11. Aureliano C. Malheiro & Mafalda Pires & Nuno Conceição & Ana M. Claro & Lia-Tânia Dinis & José Moutinho-Pereira, 2020. "Linking Sap Flow and Trunk Diameter Measurements to Assess Water Dynamics of Touriga-Nacional Grapevines Trained in Cordon and Guyot Systems," Agriculture, MDPI, vol. 10(8), pages 1-15, August.
    12. Egea, Gregorio & Fernández, José E. & Alcon, Francisco, 2017. "Financial assessment of adopting irrigation technology for plant-based regulated deficit irrigation scheduling in super high-density olive orchards," Agricultural Water Management, Elsevier, vol. 187(C), pages 47-56.
    13. Pérez-López, D. & Pérez-Rodríguez, J.M. & Moreno, M.M. & Prieto, M.H. & Ramírez-Santa-Pau, M. & Gijón, M.C. & Guerrero, J. & Moriana, A., 2013. "Influence of different cultivars–locations on maximum daily shrinkage indicators: Limits to the reference baseline approach," Agricultural Water Management, Elsevier, vol. 127(C), pages 31-39.
    14. Padilla-Díaz, C.M. & Rodriguez-Dominguez, C.M. & Hernandez-Santana, V. & Perez-Martin, A. & Fernández, J.E., 2016. "Scheduling regulated deficit irrigation in a hedgerow olive orchard from leaf turgor pressure related measurements," Agricultural Water Management, Elsevier, vol. 164(P1), pages 28-37.
    15. Corell, M. & Martín-Palomo, M.J. & Pérez-López, D. & Centeno, A. & Girón, I. & Moreno, F. & Torrecillas, A. & Moriana, A., 2017. "Approach for using trunk growth rate (TGR) in the irrigation scheduling of table olive orchards," Agricultural Water Management, Elsevier, vol. 192(C), pages 12-20.
    16. Alcaras, L. Martín Agüero & Rousseaux, M. Cecilia & Searles, Peter S., 2016. "Responses of several soil and plant indicators to post-harvest regulated deficit irrigation in olive trees and their potential for irrigation scheduling," Agricultural Water Management, Elsevier, vol. 171(C), pages 10-20.
    17. Du, Shaoqing & Tong, Ling & Zhang, Xiaotao & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Signal intensity based on maximum daily stem shrinkage can reflect the water status of apple trees under alternate partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 190(C), pages 21-30.
    18. Girón, I.F. & Corell, M. & Galindo, A. & Torrecillas, E. & Morales, D. & Dell’Amico, J. & Torrecillas, A. & Moreno, F. & Moriana, A., 2015. "Changes in the physiological response between leaves and fruits during a moderate water stress in table olive trees," Agricultural Water Management, Elsevier, vol. 148(C), pages 280-286.
    19. Abdelfatah, Ashraf & Aranda, Xavier & Savé, Robert & de Herralde, Felicidad & Biel, Carmen, 2013. "Evaluation of the response of maximum daily shrinkage in young cherry trees submitted to water stress cycles in a greenhouse," Agricultural Water Management, Elsevier, vol. 118(C), pages 150-158.
    20. Rallo, Giovanni & Provenzano, Giuseppe, 2013. "Modelling eco-physiological response of table olive trees (Olea europaea L.) to soil water deficit conditions," Agricultural Water Management, Elsevier, vol. 120(C), pages 79-88.
    21. Panagiotis Christias & Ioannis N. Daliakopoulos & Thrassyvoulos Manios & Mariana Mocanu, 2020. "Comparison of Three Computational Approaches for Tree Crop Irrigation Decision Support," Mathematics, MDPI, vol. 8(5), pages 1-26, May.
    22. Girón, I.F. & Corell, M. & Martín-Palomo, M.J. & Galindo, A. & Torrecillas, A. & Moreno, F. & Moriana, A., 2016. "Limitations and usefulness of maximum daily shrinkage (MDS) and trunk growth rate (TGR) indicators in the irrigation scheduling of table olive trees," Agricultural Water Management, Elsevier, vol. 164(P1), pages 38-45.
    23. Moriana, A. & Moreno, F. & Girón, I.F. & Conejero, W. & Ortuño, M.F. & Morales, D. & Corell, M. & Torrecillas, A., 2011. "Seasonal changes of maximum daily shrinkage reference equations for irrigation scheduling in olive trees: Influence of fruit load," Agricultural Water Management, Elsevier, vol. 99(1), pages 121-127.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ortuño, M.F. & Conejero, W. & Moreno, F. & Moriana, A. & Intrigliolo, D.S. & Biel, C. & Mellisho, C.D. & Pérez-Pastor, A. & Domingo, R. & Ruiz-Sánchez, M.C. & Casadesus, J. & Bonany, J. & Torrecillas,, 2010. "Could trunk diameter sensors be used in woody crops for irrigation scheduling? A review of current knowledge and future perspectives," Agricultural Water Management, Elsevier, vol. 97(1), pages 1-11, January.
    2. Abdelfatah, Ashraf & Aranda, Xavier & Savé, Robert & de Herralde, Felicidad & Biel, Carmen, 2013. "Evaluation of the response of maximum daily shrinkage in young cherry trees submitted to water stress cycles in a greenhouse," Agricultural Water Management, Elsevier, vol. 118(C), pages 150-158.
    3. Martínez-Gimeno, M.A. & Zahaf, A. & Badal, E. & Paz, S. & Bonet, L. & Pérez-Pérez, J.G., 2022. "Effect of progressive irrigation water reductions on super-high-density olive orchards according to different scarcity scenarios," Agricultural Water Management, Elsevier, vol. 262(C).
    4. Silber, A. & Naor, A. & Israeli, Y. & Assouline, S., 2013. "Combined effect of irrigation regime and fruit load on the patterns of trunk-diameter variation of ‘Hass’ avocado at different phenological periods," Agricultural Water Management, Elsevier, vol. 129(C), pages 87-94.
    5. Ben-Gal, Alon & Kool, Dilia & Agam, Nurit & van Halsema, Gerardo E. & Yermiyahu, Uri & Yafe, Ariel & Presnov, Eugene & Erel, Ran & Majdop, Ahmed & Zipori, Isaac & Segal, Eran & Rüger, Simon & Zimmerma, 2010. "Whole-tree water balance and indicators for short-term drought stress in non-bearing 'Barnea' olives," Agricultural Water Management, Elsevier, vol. 98(1), pages 124-133, December.
    6. Dell’Amico, J. & Moriana, A. & Corell, M. & Girón, I.F. & Morales, D. & Torrecillas, A. & Moreno, F., 2012. "Low water stress conditions in table olive trees (Olea europaea L.) during pit hardening produced a different response of fruit and leaf water relations," Agricultural Water Management, Elsevier, vol. 114(C), pages 11-17.
    7. Conejero, W. & Ortuño, M.F. & Mellisho, C.D. & Torrecillas, A., 2010. "Influence of crop load on maximum daily trunk shrinkage reference equations for irrigation scheduling of early maturing peach trees," Agricultural Water Management, Elsevier, vol. 97(2), pages 333-338, February.
    8. Moriana, A. & Moreno, F. & Girón, I.F. & Conejero, W. & Ortuño, M.F. & Morales, D. & Corell, M. & Torrecillas, A., 2011. "Seasonal changes of maximum daily shrinkage reference equations for irrigation scheduling in olive trees: Influence of fruit load," Agricultural Water Management, Elsevier, vol. 99(1), pages 121-127.
    9. Correa-Tedesco, Guillermo & Rousseaux, M. Cecilia & Searles, Peter S., 2010. "Plant growth and yield responses in olive (Olea europaea) to different irrigation levels in an arid region of Argentina," Agricultural Water Management, Elsevier, vol. 97(11), pages 1829-1837, November.
    10. Corell, M. & Martín-Palomo, M.J. & Girón, I. & Andreu, L. & Galindo, A. & Centeno, A. & Pérez-López, D. & Moriana, A., 2020. "Stem water potential-based regulated deficit irrigation scheduling for olive table trees," Agricultural Water Management, Elsevier, vol. 242(C).
    11. Corell, M. & Martín-Palomo, M.J. & Pérez-López, D. & Centeno, A. & Girón, I. & Moreno, F. & Torrecillas, A. & Moriana, A., 2017. "Approach for using trunk growth rate (TGR) in the irrigation scheduling of table olive orchards," Agricultural Water Management, Elsevier, vol. 192(C), pages 12-20.
    12. Sánchez-Piñero, M. & Martín-Palomo, M.J. & Andreu, L. & Moriana, A. & Corell, M., 2022. "Evaluation of a simplified methodology to estimate the CWSI in olive orchards," Agricultural Water Management, Elsevier, vol. 269(C).
    13. Blanco, Víctor & Domingo, Rafael & Pérez-Pastor, Alejandro & Blaya-Ros, Pedro José & Torres-Sánchez, Roque, 2018. "Soil and plant water indicators for deficit irrigation management of field-grown sweet cherry trees," Agricultural Water Management, Elsevier, vol. 208(C), pages 83-94.
    14. Puig-Sirera, Àngela & Provenzano, Giuseppe & González-Altozano, Pablo & Intrigliolo, Diego S. & Rallo, Giovanni, 2021. "Irrigation water saving strategies in Citrus orchards: Analysis of the combined effects of timing and severity of soil water deficit," Agricultural Water Management, Elsevier, vol. 248(C).
    15. Corell, M. & Martín-Palomo, M.J. & Girón, I. & Andreu, L. & Trigo, E. & López-Moreno, Y.E. & Torrecillas, A. & Centeno, A. & Pérez-López, D. & Moriana, A., 2019. "Approach using trunk growth rate data to identify water stress conditions in olive trees," Agricultural Water Management, Elsevier, vol. 222(C), pages 12-20.
    16. Martín-Vertedor, Ana I. & Rodríguez, Juan M. Pérez & Losada, Henar Prieto & Castiel, Elías Fereres, 2011. "Interactive responses to water deficits and crop load in olive (olea europaea L., cv. Morisca) I. - Growth and water relations," Agricultural Water Management, Elsevier, vol. 98(6), pages 941-949, April.
    17. Martín-Vertedor, Ana I. & Rodríguez, Juan M. Pérez & Losada, Henar Prieto & Castiel, Elías Fereres, 2011. "Interactive responses to water deficits and crop load in olive (Olea europaea L., cv. Morisca). II: Water use, fruit and oil yield," Agricultural Water Management, Elsevier, vol. 98(6), pages 950-958, April.
    18. Corell, M. & Girón, I.F. & Moriana, A. & Dell’Amico, J. & Morales, D. & Moreno, F., 2013. "Extrapolating base-line trunk shrinkage reference equations across olive orchards," Agricultural Water Management, Elsevier, vol. 126(C), pages 1-8.
    19. Marta M. Moreno & Sara González-Mora & Jaime Villena & Carmen Moreno, 2023. "Organic Hydromulches in Young Olive Trees in Pots: Effects on Soil and Plant Parameters," Agriculture, MDPI, vol. 13(12), pages 1-20, November.
    20. Griñán, I. & Rodríguez, P. & Cruz, Z.N. & Nouri, H. & Borsato, E. & Molina, A.J. & Moriana, A. & Centeno, A. & Martín-Palomo, M.J. & Pérez-López, D. & Torrecillas, A. & Galindo, A., 2019. "Leaf water relations in Diospyros kaki during a mild water deficit exposure," Agricultural Water Management, Elsevier, vol. 217(C), pages 391-398.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:97:y:2010:i:11:p:1822-1828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.