IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v91y2007i1-3p102-111.html
   My bibliography  Save this article

Interactions between salinity and irrigation frequency in greenhouse pepper grown in closed-cycle hydroponic systems

Author

Listed:
  • Savvas, D.
  • Stamati, E.
  • Tsirogiannis, I.L.
  • Mantzos, N.
  • Barouchas, P.E.
  • Katsoulas, N.
  • Kittas, C.

Abstract

No abstract is available for this item.

Suggested Citation

  • Savvas, D. & Stamati, E. & Tsirogiannis, I.L. & Mantzos, N. & Barouchas, P.E. & Katsoulas, N. & Kittas, C., 2007. "Interactions between salinity and irrigation frequency in greenhouse pepper grown in closed-cycle hydroponic systems," Agricultural Water Management, Elsevier, vol. 91(1-3), pages 102-111, July.
  • Handle: RePEc:eee:agiwat:v:91:y:2007:i:1-3:p:102-111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(07)00117-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rouphael, Youssef & Cardarelli, Mariateresa & Rea, Elvira & Battistelli, Alberto & Colla, Giuseppe, 2006. "Comparison of the subirrigation and drip-irrigation systems for greenhouse zucchini squash production using saline and non-saline nutrient solutions," Agricultural Water Management, Elsevier, vol. 82(1-2), pages 99-117, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Youzhen Xiang & Haiyang Zou & Fucang Zhang & Shengcai Qiang & You Wu & Shicheng Yan & Haidong Wang & Lifeng Wu & Junliang Fan & Xiukang Wang, 2018. "Effect of Irrigation Level and Irrigation Frequency on the Growth of Mini Chinese Cabbage and Residual Soil Nitrate Nitrogen," Sustainability, MDPI, vol. 11(1), pages 1-20, December.
    2. Vincenzo Michele Sellitto & Nadezhda A. Golubkina & Laura Pietrantonio & Eugenio Cozzolino & Antonio Cuciniello & Vincenzo Cenvinzo & Imbrea Florin & Gianluca Caruso, 2019. "Tomato Yield, Quality, Mineral Composition and Antioxidants as Affected by Beneficial Microorganisms Under Soil Salinity Induced by Balanced Nutrient Solutions," Agriculture, MDPI, vol. 9(5), pages 1-15, May.
    3. Carmine Amalfitano & Laura Del Vacchio & Silvano Somma & Antonio Cuciniello & Gianluca Caruso, 2017. "Effects of cultural cycle and nutrient solution electrical conductivity on plant growth, yield and fruit quality of 'Friariello' pepper grown in hydroponics," Horticultural Science, Czech Academy of Agricultural Sciences, vol. 44(2), pages 91-98.
    4. Rubio, J.S. & Rubio, F. & Martínez, V. & García-Sánchez, F., 2010. "Amelioration of salt stress by irrigation management in pepper plants grown in coconut coir dust," Agricultural Water Management, Elsevier, vol. 97(10), pages 1695-1702, October.
    5. Ferrarezi, Rhuanito Soranz & Testezlaf, Roberto, 2017. "Automated ebb-and-flow subirrigation for citrus liners production. II. Pests, diseases and nutrient concentration," Agricultural Water Management, Elsevier, vol. 192(C), pages 21-32.
    6. Josefa López-Marín & Amparo Gálvez & Francisco M. del Amor & Jose M. Brotons, 2020. "The Financial Valuation Risk in Pepper Production: The Use of Decoupled Net Present Value," Mathematics, MDPI, vol. 9(1), pages 1-19, December.
    7. Erika Kurucz & Gabriella Antal & Ida Kincses & Marianna Sipos & Miklós Gábor Fári & Imre J. Holb, 2023. "Effect of Light Treatment and Maturity Stage on Biomass Production and Bioactive Compounds of Two Pepper Cultivars under a Deep Water Culture Hydroponic System," Sustainability, MDPI, vol. 15(17), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zambon, Flavia Tabay & Meadows, Taylor D. & Eckman, Megan A. & Rodriguez, Katya Michelle Rivera & Ferrarezi, Rhuanito Soranz, 2022. "Automated ebb-and-flow subirrigation accelerates citrus liner production in treepots," Agricultural Water Management, Elsevier, vol. 262(C).
    2. Ferrarezi, Rhuanito Soranz & Testezlaf, Roberto, 2017. "Automated ebb-and-flow subirrigation for citrus liners production. I. Plant growth," Agricultural Water Management, Elsevier, vol. 192(C), pages 45-57.
    3. Venezia, Accursio & Colla, Giuseppe & Di Cesare, Carlo & Stipic, Marija & Massa, Daniele, 2022. "The effect of different fertigation strategies on salinity and nutrient dynamics of cherry tomato grown in a gutter subirrigation system," Agricultural Water Management, Elsevier, vol. 262(C).
    4. Sara Rajabi Hamedani & Youssef Rouphael & Giuseppe Colla & Andrea Colantoni & Mariateresa Cardarelli, 2020. "Biostimulants as a Tool for Improving Environmental Sustainability of Greenhouse Vegetable Crops," Sustainability, MDPI, vol. 12(12), pages 1-10, June.
    5. Neocleous, Damianos & Savvas, Dimitrios, 2018. "Modelling Ca2+ accumulation in soilless zucchini crops: Physiological and agronomical responses," Agricultural Water Management, Elsevier, vol. 203(C), pages 197-206.
    6. Ferrarezi, Rhuanito Soranz & Testezlaf, Roberto, 2017. "Automated ebb-and-flow subirrigation for citrus liners production. II. Pests, diseases and nutrient concentration," Agricultural Water Management, Elsevier, vol. 192(C), pages 21-32.
    7. Jani, Arun D. & Meadows, Taylor D. & Eckman, Megan A. & Ferrarezi, Rhuanito Soranz, 2021. "Automated ebb-and-flow subirrigation conserves water and enhances citrus liner growth compared to capillary mat and overhead irrigation methods," Agricultural Water Management, Elsevier, vol. 246(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:91:y:2007:i:1-3:p:102-111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.