IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v76y2005i2p94-107.html
   My bibliography  Save this article

Quantifying risk for water harvesting under semi-arid conditions: Part II. Crop yield simulation

Author

Listed:
  • Walker, S.
  • Tsubo, M.
  • Hensley, M.

Abstract

No abstract is available for this item.

Suggested Citation

  • Walker, S. & Tsubo, M. & Hensley, M., 2005. "Quantifying risk for water harvesting under semi-arid conditions: Part II. Crop yield simulation," Agricultural Water Management, Elsevier, vol. 76(2), pages 94-107, August.
  • Handle: RePEc:eee:agiwat:v:76:y:2005:i:2:p:94-107
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(05)00039-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Young, M. D. B. & Gowing, J. W. & Wyseure, G. C. L. & Hatibu, N., 2002. "Parched-Thirst: development and validation of a process-based model of rainwater harvesting," Agricultural Water Management, Elsevier, vol. 55(2), pages 121-140, June.
    2. Carter, D. C. & Miller, S., 1991. "Three years experience with an on-farm macro-catchment water harvesting system in Botswana," Agricultural Water Management, Elsevier, vol. 19(3), pages 191-203, April.
    3. Boers, Th. M. & Ben-Asher, J., 1982. "A review of rainwater harvesting," Agricultural Water Management, Elsevier, vol. 5(2), pages 145-158, July.
    4. Wiyo, K. A. & Kasomekera, Z. M. & Feyen, J., 2000. "Effect of tied-ridging on soil water status of a maize crop under Malawi conditions," Agricultural Water Management, Elsevier, vol. 45(2), pages 101-125, July.
    5. Tsubo, M. & Walker, S. & Hensley, M., 2005. "Quantifying risk for water harvesting under semi-arid conditions: Part I. Rainfall intensity generation," Agricultural Water Management, Elsevier, vol. 76(2), pages 77-93, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsubo, M. & Walker, S. & Hensley, M., 2005. "Quantifying risk for water harvesting under semi-arid conditions: Part I. Rainfall intensity generation," Agricultural Water Management, Elsevier, vol. 76(2), pages 77-93, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsubo, M. & Walker, S. & Hensley, M., 2005. "Quantifying risk for water harvesting under semi-arid conditions: Part I. Rainfall intensity generation," Agricultural Water Management, Elsevier, vol. 76(2), pages 77-93, August.
    2. Young, M. D. B. & Gowing, J. W. & Wyseure, G. C. L. & Hatibu, N., 2002. "Parched-Thirst: development and validation of a process-based model of rainwater harvesting," Agricultural Water Management, Elsevier, vol. 55(2), pages 121-140, June.
    3. Glendenning, C.J. & van Ogtrop, F.F. & Mishra, A.K. & Vervoort, R.W., 2012. "Balancing watershed and local scale impacts of rain water harvesting in India—A review," Agricultural Water Management, Elsevier, vol. 107(C), pages 1-13.
    4. Ren, Xiaolong & Jia, Zhikuan & Chen, Xiaoli, 2008. "Rainfall concentration for increasing corn production under semiarid climate," Agricultural Water Management, Elsevier, vol. 95(12), pages 1293-1302, December.
    5. Truman, C.C. & Nuti, R.C., 2009. "Improved water capture and erosion reduction through furrow diking," Agricultural Water Management, Elsevier, vol. 96(7), pages 1071-1077, July.
    6. Oweis, T. & Hachum, A., 2009. "Water harvesting for improved rainfed agriculture in the dry environments," IWMI Books, Reports H041998, International Water Management Institute.
    7. Andersson, Jafet C.M. & Zehnder, Alexander J.B. & Rockström, Johan & Yang, Hong, 2011. "Potential impacts of water harvesting and ecological sanitation on crop yield, evaporation and river flow regimes in the Thukela River basin, South Africa," Agricultural Water Management, Elsevier, vol. 98(7), pages 1113-1124, May.
    8. Miguel A. Altieri & Clara I. Nicholls, 2017. "The adaptation and mitigation potential of traditional agriculture in a changing climate," Climatic Change, Springer, vol. 140(1), pages 33-45, January.
    9. Nyakudya, Innocent Wadzanayi & Stroosnijder, Leo & Nyagumbo, Isaiah, 2014. "Infiltration and planting pits for improved water management and maize yield in semi-arid Zimbabwe," Agricultural Water Management, Elsevier, vol. 141(C), pages 30-46.
    10. Hubert Stahn & Agnès Tomini, 2014. "On the Environmental Efficiency of Water Storage: The Case of a Conjunctive Use of Ground and Rainwater," AMSE Working Papers 1452, Aix-Marseille School of Economics, France.
    11. Previati, M. & Bevilacqua, I. & Canone, D. & Ferraris, S. & Haverkamp, R., 2010. "Evaluation of soil water storage efficiency for rainfall harvesting on hillslope micro-basins built using time domain reflectometry measurements," Agricultural Water Management, Elsevier, vol. 97(3), pages 449-456, March.
    12. Hallie Eakin & Victor Magaña & Joel Smith & José Moreno & José Martínez & Osvaldo Landavazo, 2007. "A stakeholder driven process to reduce vulnerability to climate change in Hermosillo, Sonora, Mexico," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(5), pages 935-955, June.
    13. Ndung’u, M. & Mugwe, J.N. & Mucheru-Muna, M.W. & Ngetich, F.K. & Mairura, F.S. & Mugendi, D.N., 2023. "Tied-ridging and soil inputs enhance small-scale maize productivity and profitability under erratic rainfall conditions in central Kenya," Agricultural Water Management, Elsevier, vol. 286(C).
    14. Azra Munirah Mat Daud & Siti Nazahiyah Rahmat & Aziman Madun & Mohammad Sukri Mustapa, 2021. "Issues And Challenges In Rainwater Harvesting For Potential Potable And Non-Potable Water Production," INWASCON Technology Magazine(i-TECH MAG), Zibeline International Publishing, vol. 3, pages 55-58, April.
    15. Grum, Berhane & Hessel, Rudi & Kessler, Aad & Woldearegay, Kifle & Yazew, Eyasu & Ritsema, Coen & Geissen, Violette, 2016. "A decision support approach for the selection and implementation of water harvesting techniques in arid and semi-arid regions," Agricultural Water Management, Elsevier, vol. 173(C), pages 35-47.
    16. Abu-Awwad, A. M., 1998. "Irrigation management in arid areas affected by surface crust," Agricultural Water Management, Elsevier, vol. 38(1), pages 21-32, October.
    17. Wang, Xiao-Ling & Li, Feng-Min & Jia, Yu & Shi, Wen-Quan, 2005. "Increasing potato yields with additional water and increased soil temperature," Agricultural Water Management, Elsevier, vol. 78(3), pages 181-194, December.
    18. Nagarajan Shanmugavel & Rema Rajendran, 2022. "Adoption of Rainwater Harvesting: a Dual-factor Approach by Integrating Theory of Planned Behaviour and Norm Activation Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2827-2845, June.
    19. Wiyo, K. A. & Kasomekera, Z. M. & Feyen, J., 2000. "Effect of tied-ridging on soil water status of a maize crop under Malawi conditions," Agricultural Water Management, Elsevier, vol. 45(2), pages 101-125, July.
    20. Fan, Tinglu & Wang, Shuying & Li, Yongping & Yang, Xiaomei & Li, Shangzhong & Ma, Mingsheng, 2019. "Film mulched furrow-ridge water harvesting planting improves agronomic productivity and water use efficiency in Rainfed Areas," Agricultural Water Management, Elsevier, vol. 217(C), pages 1-10.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:76:y:2005:i:2:p:94-107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.