IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v295y2024ics0378377424001161.html
   My bibliography  Save this article

Rehydration under extreme drought conditions affected rhizosphere microorganisms more than bulk soil in broomcorn millet farmland

Author

Listed:
  • Tian, Lixin
  • Yang, Yu
  • Song, Youhong
  • Feng, Baili

Abstract

Rehydration is a primary adaptation strategy for alleviating the detrimental effects of drought on crop growth. However, the effects of rehydration on microbial communities in various compartments under drought conditions remain poorly understood. Herein, we explored the response patterns of bacterial and fungal community composition, diversity, ecological network, and assembly process in the bulk soil and rhizosphere of broomcorn millet farmland at 5, 10, 20, and 30 days after rehydration during drought conditions. Compared to drought, rehydration significantly decreased the organic matter (OM), total nitrogen (TN), available potassium (AK), available phosphorus (AP), nitrate nitrogen (NO3--N), and ammonium nitrogen (NH4+-N) contents in rhizosphere, but had no obvious influences on the OM and TN contents in bulk soil on the four sampling days. In the rhizosphere of broomcorn millet field, Firmicutes and Actinobacteria were enriched in drought condition, but Proteobacteria and Bacteroidetes were enriched in rehydration regime. Compared to drought, the relative abundances of Eurotiomycetes, Dothideomycetes, Mortierellomycetes, and Leotiomycetes were enhanced, but Sordariomycetes was reduced on the 5th and 10th days after rehydration. Rehydration increased the bacterial and fungal observed ASVs and Shannon index in the rhizosphere to varying degrees, but had little effect on the bulk soil. Null-model analysis indicated that rehydration deceased the stochastic process of fungal communities in the bulk soil, whereas had no influence on deterministic process of bacterial community in the bulk soil and rhizosphere. More importantly, rhizosphere properties had a greater impact on the bacterial and fungal community composition, diversity, and assembly process than bulk soil. Network analysis revealed that rehydration improved the interconnected taxa in the rhizosphere bacterial network, but reduced microbial interactions in the rhizosphere fungal network compared to drought. This work provides a theoretical foundation for elucidating the role of rehydration regime in governing the ecological services of microbiome of broomcorn millet farmland under drought conditions.

Suggested Citation

  • Tian, Lixin & Yang, Yu & Song, Youhong & Feng, Baili, 2024. "Rehydration under extreme drought conditions affected rhizosphere microorganisms more than bulk soil in broomcorn millet farmland," Agricultural Water Management, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:agiwat:v:295:y:2024:i:c:s0378377424001161
    DOI: 10.1016/j.agwat.2024.108781
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424001161
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108781?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:295:y:2024:i:c:s0378377424001161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.