IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v295y2024ics0378377424000982.html
   My bibliography  Save this article

High-resolution satellite imagery to assess orchard characteristics impacting water use

Author

Listed:
  • Rouault, Pierre
  • Courault, Dominique
  • Flamain, Fabrice
  • Pouget, Guillaume
  • Doussan, Claude
  • Lopez-Lozano, Raul
  • McCabe, Matthew
  • Debolini, Marta

Abstract

Most Orchards throughout the Mediterranean basin rely heavily on irrigation, a dependency increasing due to climate changes. Assessing the water requirement (WR) is crucial and depends on different factors, including orchard age, tree density per field, inter-row management. This study proposes new methods to evaluate these characteristics with remote sensing (RS). Various remote sensors providing high and very high spatial resolution images are investigated and their accuracy is assessed. The final objective is to assess WR using variables derived from remote sensing compared to data provided by water managers and from the FAO method. A typical Mediterranean watershed was selected in South-Eastern France, with orchards having various agricultural practices. Original methods were developed with Sentinel 2 (S2) data (2016–2023), 1 Pleiades image (2022) and the extraction of Google-satellite-hybrid images (GSH, 2017), and assessed using a large ground observation dataset (information on water use collected on 366 fields). Five orchards were monitored by capacitive sensors to assess the water balance. Irrigation durations ranged from 3–300 hours/year, with decision influenced by tree density and plot age. To identify young orchards, a thresholding approach on S2 derived NDVI effectively identified young orchards achieving a 98% accuracy rate. Grassed and non-grassed orchards were mapped using two methods, with a random forest classification using three spectral bands with 72% accuracy and a supervised approach yielding 81% accuracy for GSH and 57% for Pleiades. The performance depends on the acquisition date of images. A pattern detection algorithm applied to GSH and Pleaides determined tree density, showing a high correlation (r²=0.9) with observed data. These RS derived variables allowed to compute orchard water requirements at the watershed scale, ranging from 70 to 550 mm annually depending on management practices. The proposed methods can be extrapolated to other territories and are implemented using open access softwares.

Suggested Citation

  • Rouault, Pierre & Courault, Dominique & Flamain, Fabrice & Pouget, Guillaume & Doussan, Claude & Lopez-Lozano, Raul & McCabe, Matthew & Debolini, Marta, 2024. "High-resolution satellite imagery to assess orchard characteristics impacting water use," Agricultural Water Management, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:agiwat:v:295:y:2024:i:c:s0378377424000982
    DOI: 10.1016/j.agwat.2024.108763
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424000982
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108763?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:295:y:2024:i:c:s0378377424000982. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.