IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v295y2024ics0378377424000805.html
   My bibliography  Save this article

Estimating daily kiwifruit evapotranspiration under regulated deficit irrigation strategy using optimized surface resistance based model

Author

Listed:
  • Xing, Liwen
  • Cui, Ningbo
  • Liu, Chunwei
  • Guo, Li
  • Zhao, Long
  • Wu, Zongjun
  • Jiang, Xuelian
  • Wen, Shenglin
  • Zhao, Lu
  • Gong, Daozhi

Abstract

Accurate evapotranspiration (ET) estimation is paramount for effective agricultural water management. As the key parameter of surface resistance (rs)-based ET models, the direct acquisition of canopy resistance (rc) remains challenge. Moreover, the applicability of rc models and rs-based ET models has not been fully validated on kiwifruit. To address above problems, this study investigates tree growth patterns, water consumption change, and soil water content (SWC) dynamics under different irrigation strategies based on a two-year experiment in Northwest China. Subsequently, the Whale Algorithm (WOA), Quantum Whale Algorithm (QWOA), and Differential Whale Algorithm (DWOA) were employed to optimize Jarvis-type rc models (JA) constructed by different constraint functions of SWC. After internal comparison within Jarvis-type models and external comparison with Kelliher-Perrier (KP), Faria (FA), and Stannard (ST) model, the recommended rc model was integrated into Penman-Monteith (PM), Shuttleworth-Wallace (SW), and Clumping (CL) to select most suitable kiwifruit ET model. The results indicated that the water stress coefficient is suitable for JA model as a constraint function of SWC, achieving R2, NSE, RMSE, and MAPE of 0.782–0.805, 0.672–0.737, 654.191–3396.594 s m−1, and 0.102–0.183 under sufficient irrigation strategy, respectively. Under deficit irrigation strategies, the corresponding R2, NSE, RMSE, and MAPE ranged 0.886–0.917, 0.828–0.885, 325.736–3251.434 s m−1, and 0.111–0.166, respectively. Besides, DWOA is the best algorithm during whole growth period, which improved original JA by 13.2–32.9% for R2, 23.0–60.2% for NSE, 26.8–36.8% for RMSE, and 17.5–36.2%, respectively. Regarding rs-based ET models, the CL performed best under various irrigation conditions, with values of R2, NSE, RMSE, and MAPE ranging 0.908–0.961, 0.842–0.947, 0.311–0.808 mm, and 0.088–0.197, respectively. Overall, the CL integrated with DWOA-JA3 is most recommended for estimating kiwifruit ET under different irrigation strategies, which is helpful for orchardists to enhance agricultural water utilization efficiency and promote sustainable kiwifruit production.

Suggested Citation

  • Xing, Liwen & Cui, Ningbo & Liu, Chunwei & Guo, Li & Zhao, Long & Wu, Zongjun & Jiang, Xuelian & Wen, Shenglin & Zhao, Lu & Gong, Daozhi, 2024. "Estimating daily kiwifruit evapotranspiration under regulated deficit irrigation strategy using optimized surface resistance based model," Agricultural Water Management, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:agiwat:v:295:y:2024:i:c:s0378377424000805
    DOI: 10.1016/j.agwat.2024.108745
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424000805
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108745?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:295:y:2024:i:c:s0378377424000805. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.