IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v294y2024ics0378377424000519.html
   My bibliography  Save this article

Exploring the differences of moisture traceability methods based on MixSIAR model under different nitrogen applications of wheat in the Arid Region of Northwest China

Author

Listed:
  • Liu, Yingbo
  • Yuan, Yusen
  • Zhang, Liang
  • Du, Taisheng

Abstract

The Bayesian stable isotope mixing (MixSIAR) model was widely used in water source tracing. However, double isotope and single isotope calculated by the MixSIAR model led to different results in terms of previous studies. The effect of different nitrogen treatments on the water traceability results of wheat crops is still unclear. This study investigated the wheat root water uptake patterns at different nitrogen application gradients, as well as at different isotopes in the MixSIAR model. The results showed the main soil water uptake layer was relative constant at the treatment of 15% nitrogen reduction, and the water source was mainly from 0–10 cm soil layer from jointing to harvest. The main soil water uptake layer significantly varied at the treatment of 30% nitrogen reduction, which yielded the highest. 45% reduction of nitrogen treatment showed the deepest soil water uptake absorption on average with the whole wheat growth period. The consistency of the results between the two single isotope methods was better in the early stage of wheat and worse in the later stage. The inconsistency of root water uptake distribution results between the two single isotope methods might be influenced by the water transport mechanism of wheat stem and sampling errors. The double isotope method had the lowest uncertainty, but it might amplify the error of the sampling process. The uncertainty of the single hydrogen isotope method was less than single oxygen isotope method. This study provided a new evaluation of hydrogen-oxygen stable isotope traceability methods for wheat under different nitrogen treatments, and gave more ideas and insights for subsequent crop water traceability by the MixSIAR method.

Suggested Citation

  • Liu, Yingbo & Yuan, Yusen & Zhang, Liang & Du, Taisheng, 2024. "Exploring the differences of moisture traceability methods based on MixSIAR model under different nitrogen applications of wheat in the Arid Region of Northwest China," Agricultural Water Management, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:agiwat:v:294:y:2024:i:c:s0378377424000519
    DOI: 10.1016/j.agwat.2024.108716
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424000519
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108716?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:294:y:2024:i:c:s0378377424000519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.