IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v293y2024ics037837742400043x.html
   My bibliography  Save this article

Nitrate leaching is the main driving factor of soil calcium and magnesium leaching loss in intensive plastic-shed vegetable production systems

Author

Listed:
  • Zhou, Weiwei
  • Wang, Qunyan
  • Chen, Shuo
  • Chen, Fei
  • Lv, Haofeng
  • Li, Junliang
  • Chen, Qing
  • Zhou, Jianbin
  • Liang, Bin

Abstract

Soil pH is important for influencing soil properties. High input of nitrogen (N) fertilizers and irrigation water has accelerated the soil acidification in plastic-shed greenhouses. However, little is known about the dynamics of soil pH buffering system, especially the base cations, and its response mechanisms under different N management practices. In this study, we investigated the responses of soil Ca2+ and Mg2+ leaching loss to nitrate leaching under different N application rate, N forms, or straw addition. Our long-term experiment in typical greenhouses showed that N application significantly decreased soil pH and increased Ca2+ and Mg2+ leaching loss by 43.1–73.6%, which correlated significantly and positively with nitrate leaching loss. However, optimizing N application and straw incorporation alleviated the leaching loss of Ca2+ and Mg2+ not only by alleviating the accompanying nitrate leaching caused by reduced N input, but also by reducing the conversion of exchangeable Ca2+ and Mg2+ to water-soluble Ca2+ and Mg2+ caused by alleviating soil pH reduction. The laboratory microcosm experiment showed that nitrate application did not reduce soil pH, but significantly increased the leaching loss of Ca2+ and Mg2+. Ammonium sulfate application also significantly increased the leaching loss of Ca2+ and Mg2+, whereas the effects were significantly reversed by nitrification inhibitors. These results further supported the importance of nitrate leaching in promoting the Ca2+ and Mg2+ losses. Together, this study revealed new insights into the dynamics of cation losses mainly regulated by nitrate leaching loss, highlighting that optimizing N management is an effective strategy to alleviate base cation losses and subsequent soil acidification for sustainable agricultural management.

Suggested Citation

  • Zhou, Weiwei & Wang, Qunyan & Chen, Shuo & Chen, Fei & Lv, Haofeng & Li, Junliang & Chen, Qing & Zhou, Jianbin & Liang, Bin, 2024. "Nitrate leaching is the main driving factor of soil calcium and magnesium leaching loss in intensive plastic-shed vegetable production systems," Agricultural Water Management, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:agiwat:v:293:y:2024:i:c:s037837742400043x
    DOI: 10.1016/j.agwat.2024.108708
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837742400043X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108708?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:293:y:2024:i:c:s037837742400043x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.