IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v292y2024ics0378377424000210.html
   My bibliography  Save this article

Film mulched ridge–furrow tillage improves the quality and fertility of dryland agricultural soil by enhancing soil organic carbon and nutrient stratification

Author

Listed:
  • Yang, Fengke
  • He, Baolin
  • Dong, Bo
  • Zhang, Guoping

Abstract

Film mulched ridge–furrow tillage (FMRF) has been successfully used to replace conventional tillage (CT) and increase maize yields in drylands in northwestern China. To increase maize production sustainably, however, investigations are warranted of the underlying mechanism through which FMRF affects soil quality and fertility. Therefore, we conducted an 18-year survey (2003–2020) and a 6-year (2015–2020) field experiment to systematically compare CT and FMRF with regard to soil bulk density (BD) and the concentration, storage, and stratification of soil organic carbon (SOC); labile organic carbon (LOC); total nitrogen, phosphorus, and potassium (TN, TP, and TK, respectively); and available N, P, and K (AN, AP, and AK, respectively). Data were collected in a soil layer of 0–30 cm in the survey and in a soil profile of 0–100 cm with 20-cm increments in the field experiment. The SOC, N, P, and K storage, C:N ratio, and their surface stratification ratios were calculated, and their contributions to soil quality and fertility were systematically evaluated. The results indicated that BD decreased with increasing years of FMRF application. Compared to CT, FMRF significantly increased the concentrations of AK, AP, AN, TK, TP, TN, LOC, and SOC, especially at the 0–40 cm soil horizon and the storage of SOC, TN, TP, and TK in the entire 0–100 cm soil profile, but significantly decreased the C:N ratio at 0–60 cm depth. The stratification ratios of AK, AP, AN, LOC, TK, TN, TP, and SOC were within 1–2.5 and were significantly higher under FMRF than CT for 0–60 cm depth. FMRF also significantly improved soil water status and contributed greatly to increasing the concentration and redistribution of SOC, N, P, and K. Therefore, FMRF improved the soil quality and fertility by increasing the concentration and stratification of SOC, N, P, and K. Further investigations should systematically consider the integrated effects of soil types, farming system, soil microbial processes, and climatic factors.

Suggested Citation

  • Yang, Fengke & He, Baolin & Dong, Bo & Zhang, Guoping, 2024. "Film mulched ridge–furrow tillage improves the quality and fertility of dryland agricultural soil by enhancing soil organic carbon and nutrient stratification," Agricultural Water Management, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:agiwat:v:292:y:2024:i:c:s0378377424000210
    DOI: 10.1016/j.agwat.2024.108686
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424000210
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108686?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:292:y:2024:i:c:s0378377424000210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.