IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v292y2024ics0378377424000064.html
   My bibliography  Save this article

Effects of saline-fresh water rotation irrigation on photosynthetic characteristics and leaf ultrastructure of tomato plants in a greenhouse

Author

Listed:
  • Xin, Lang
  • Tang, Maosong
  • Zhang, Lei
  • Huang, Weixiong
  • Wang, Xingpeng
  • Gao, Yang

Abstract

To reveal the mechanisms of saline-fresh water rotation irrigation that affect the leaf ultrastructure and photosynthetic characteristics of tomato plants and to optimize the strategy of saline water irrigation of greenhouse tomatoes, a two-season tomato experiment with four treatments of saline-fresh water rotation irrigation was conducted in a greenhouse in southern Xinjiang. The four treatments consisted of rotation irrigation with four times saline-fresh water (W1), rotation irrigation with two times saline water and two times fresh water (W2), rotation irrigation with two times fresh water, four times saline water, and two times fresh water (W3), and freshwater irrigation as a control (CK). The three rotation patterns had the same amount of saline water and fresh water, but the rotational interval was different. The results indicated that the saline-alkali stress introduced by saline water significantly reduced the gas exchange parameters of tomato leaves and water use efficiency at the leaf scale, and both stomatal and non-stomatal factors played a key role in limiting leaf gas exchange. The chloroplast granular lamellae structure was disrupted in tomato leaves treated with W1 and W2. Compared with CK, W1 and W2 decreased leaf chlorophyll content by 4.59% and 10.89%, net photosynthetic rate by 26.82% and 40.11%, and yield by 60.62% and 67.63%, respectively. In contrast, W3 presented a relatively intact mesophyll cell structure and relatively high chlorophyll content and photosynthetic efficiency. In W3 treatment, no significant differences were found in the number of fruits per plant (only increased by 8.16% and the yield by 4.03%), while with better quality compared with CK. The results suggested that tomato growth and yield were neither poor nor detrimental when rotated with saline water during the flowering and fruiting stage-fruit expansion stage and freshwater irrigation during other growth stages. W3 can be used as a saline-fresh water rotation pattern for tomato production in greenhouses in arid and saline areas.

Suggested Citation

  • Xin, Lang & Tang, Maosong & Zhang, Lei & Huang, Weixiong & Wang, Xingpeng & Gao, Yang, 2024. "Effects of saline-fresh water rotation irrigation on photosynthetic characteristics and leaf ultrastructure of tomato plants in a greenhouse," Agricultural Water Management, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:agiwat:v:292:y:2024:i:c:s0378377424000064
    DOI: 10.1016/j.agwat.2024.108671
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424000064
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108671?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:292:y:2024:i:c:s0378377424000064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.